全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GPU并行的改进SPH方法对粘性流场的模拟

DOI: 10.3969/j.issn.1006-7043.201406017

Keywords: 光滑粒子流体动力学, δ-SPH, GPU, 粒子对, 粘性流场, 孤立波砰击

Full-Text   Cite this paper   Add to My Lib

Abstract:

光滑粒子水动力学(SPH)方法对模拟破碎波问题有着良好的适应性。基于众核架构的GPU计算平台在加速SPH方法方面有着强大的优势。针对传统SPH方法计算效率低和计算精度差的问题,采用 δ-SPH 方法对腔内剪切流动、Poiseuille流动、Couette流动问题、孤立波砰击问题进行了模拟,并且提出一种基于粒子对的GPU并行计算方法。通过比较,得到不同边界处理方法对粘性流场模拟结果的影响规律,并且研究基于粒子对和单个粒子2种不同GPU并行计算方法,对比不同计算方法的精度和CPU时间。结果表明,采用粒子对的GPU并行方法可以使 δ-SPH 方法的最大加速比超过10。

References

[1]  MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399-406.
[2]  COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2003, 191(2): 448-475.
[3]  COLAGROSSI A, LUGNI C, BROCCHINI M. A study of violent sloshing wave impacts using an improved SPH method[J]. Journal of Hydraulic Research, 2010, 48(S1): 94-104.
[4]  MONAGHAN J J. Particle methods for hydrodynamics[J]. Computer Physics Reports, 1985, 3(2): 71-124.
[5]  MARRONE S, ANTUONO M, COLAGROSSI A, et al. δ-SPH model for simulating violent impact flows[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13): 1526-1542.
[6]  MOLTENI D, COLAGROSSI A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH[J]. Computer Physics Communications, 2009, 180(6): 861-872.
[7]  高睿. SPH 强非线性水动力学数值模型的改进与应用[D]. 大连: 大连理工大学, 2011: 20-78. GAO Rui. Correction and application of high nonlinear SPH hydrodynamic model[D]. Dalian: Dalian University of Technology, 2011: 20-78.
[8]  郑兴, 段文洋. K2_SPH 方法及其对二维非线性水波的模拟[J]. 计算物理, 2011, 28(5): 659-666. ZHENG Xing, DUAN Wenyang. K2_SPH method and application for 2D nonlinear water wave simulation[J]. Chinese Journal of Computational Physics, 2011, 28(5): 659-666.
[9]  ZHENG Xing, DUAN Wenyang. Numerical simulation of dam breaking using smoothed particle hydrodynamics and viscosity behavior[J]. Journal of Marine Science and Application, 2010, (9): 34-41.
[10]  XIONG Qingang, LI Bo, XU Ji. GPU-accelerated adaptive particle splitting and merging in SPH[J]. Computer Physics Communications, 2013, 184(7): 1701-1707.
[11]  徐锋. 基于众核架构的并行 SPH 算法的研究与实现[D]. 上海: 上海交通大学, 2013: 35-65. XU Feng. Research and implementation of the smoothed particle hydrodynamics algorithm based on multi-core architecture[D]. Shanghai: Shanghai Jiao Tong University, 2013: 35-65.
[12]  朱小松. 粒子法的并行加速及在液体晃荡研究中的应用[D]. 大连: 大连理工大学, 2011: 74-109. ZHU Xiaosong. Parallel acceleration of particle method and its application on the study of liquid sloshing[D]. Dalian: Dalian University of Technology, 2011: 74-109.
[13]  郑兴. SPH 方法改进研究及其在自由面流动问题中的应用[D]. 哈尔滨: 哈尔滨工程大学, 2010: 55-89. ZHENG Xing. An investigation of improved SPH and its application for free surface flow[D]. Harbin: Harbin Engineering University, 2010: 55-89.
[14]  温婵娟, 欧嘉蔚, 贾金原. GPU 通用计算平台上的 SPH 流体模拟[J]. 计算机辅助设计与图形学学报, 2010, 22(3): 406-411. WEN Chanjuan, OU Jiawei, JIA Jinyuan. GPU-based smoothed particle hydrodynamic fluid simulation[J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(3): 406-411.
[15]  RIFFERT H, HEROLD H, FLEBBE O, et al. Numerical aspects of the smoothed particle hydrodynamics method for simulating accretion disks[J]. Computer Physics Communications, 1995, 89(1-3): 1-16.
[16]  张舒, 褚艳利. GPU高性能运算之CUDA[M]. 北京: 中国水利水电出版社, 2009: 34-56.
[17]  LIU G R, LIU M B, LI Shaofan. Smoothed particle hydrodynamics―a meshfree method[J]. Computational Mechanics, 2004, 33(6): 491.
[18]  LIU M B, LIU G R, LAM K Y, et al. Smoothed particle hydrodynamics for numerical simulation of underwater explosion[J]. Computational Mechanics, 2003, 30(2): 106-118.
[19]  LIU M B, LIU G R, ZONG Z, et al. Numerical simulation of incompressible flows by SPH[C]//International Conference on Scientific and Engineering Computational. Beijing, China, 2001: 3-6.
[20]  MORRIS J P, FOX P J, ZHU Yi. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226.
[21]  MA Q W, ZHOU Juntao. MLPG-R method for numerical simulation of 2D breaking waves[J]. Computer Modeling in Engineering and Sciences, 2009, 43(3): 277-304.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133