全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于卡尔曼滤波模型的平地行走步频预测方法

DOI: 10.3969/j.issn.1006-7043.201407070

Keywords: 智能下肢, 步频, 预测算法, 足底压力, 卡尔曼滤波

Full-Text   Cite this paper   Add to My Lib

Abstract:

现有智能下肢的控制策略都是以刚完成的一步的步频为调节阻尼的依据,调整好的阻尼只能在下一步摆动期生效,因此该控制策略是滞后的,无法做到实时控制,在步频变化频繁的场合难以适用。本文方法利用足底压力传感获取步频数据,然后通过卡尔曼预测方程由已完成的步频预测即将迈出的下一步步频。在模拟日常生活平地行走步频变化的实验中,所预测的下一步步频与后验值之间偏差比跟随方法的偏差大约减小了10%。该方法实时性好,为改善智能下肢的性能提供了新的可行性方案。

References

[1]  ZHANG Xiaorong, WANG Ding, YANG Qing, et al. An automatic and user-driven training method for locomotion mode recognition for artificial leg control[C]//Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, USA, 2012: 6116-6119.
[2]  DEJNABADI H, JOLLES B M, AMINIAN K. A new approach for quantitative analysis of inter-joint coordination during gait[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(2): 755-764.
[3]  SUN Baiqing, SHEN Jinhu, ZHAO Qiancheng, et al. Gait detection and analysis based on omni-directional lower limb rehabilitation robot[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Automatic Control and Artificial Intelligence(ACAI). Xiamen, China, 2012: 1102-1105.
[4]  LIM H B, LUU T P, HOON K H, et al. Natural gait parameters prediction for gait rehabilitation via artificial neural network[C]//Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Taipei, 2010: 5398-5403.
[5]  ZHANG Tengyu, YANG Peng, LIU Qidong, et al. A research on EMG signal and plantar pressure information for AK prosthetic control[C]//Proceedings of the 7th Asian-Pacific Conference on Medical and Biological Engineering. Beijing, 2008: 488-491.
[6]  ZHANG Feng, LI Pengfeng, HOU Zengguang, et al. An adaptive RBF neural network control strategy for lower limb rehabilitation robot[C]//Proceedings of the 3rd International Conference on Intelligent Robotics and Applications. Shanghai, China, 2010: 417-427.
[7]  LIU Yuzhang, WANG Can, ZHENG Duan, et al. An ANN based approach for gait prediction of a lower-limb exoskeleton with plantar pressure sensors[C]//Proceedings of the 6th International Conference on Intelligent Robotics and Applications. Busan, Korea, 2013: 373-383.
[8]  张令瑜, 王岚, 张立勋. 基于多传感器的实时步态检测研究[J]. 哈尔滨工程大学学报, 2007, 28(2): 218-221. ZHANG Lingyu, WANG Lan, ZHANG Lixun. Research on real-time gait phase measuring based on multi-sensor[J]. Journal of Harbin Engineering University, 2007, 28(2): 218-221.
[9]  王明鑫, 俞光荣, 陈雁西, 等. 正常中国成年人足底压力分析[J]. 中国矫形外科杂志, 2008, 16(9): 687-690. WANG Mingxin, YU Guangrong, CHEN Yanxi, et al. Analysis of the plantar pressure distribution of the normal Chinese adult[J]. Orthopedic Journal of China, 2008, 16(9): 687-690.
[10]  张凯华, 王兰美, 李安国. 基于LabVIEW的鞋垫式足底压力测试系统的设计与实现[J]. 传感器世界, 2009, 15(3): 31-33. ZHANG Kaihua, WANG Lanmei, LI Anguo. The design and realization of the insole plantar pressure measurement system based on LabVIEW[J]. Sensor World, 2009, 15(3): 31-33.
[11]  KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45.
[12]  夏启军, 孙优贤, 周春晖. 渐消卡尔曼滤波器的最佳自适应算法及其应用[J]. 自动化学报, 1990, 16(3):210-216. XIA Qijun, Sun Youxian, ZHOU Chunhui. An optimal adaptive algorithm for fading Kalman filter and its application[J]. Acta Automatica Sinica, 1990, 16(3): 210-216.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133