全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有限体积法的实体结构静力学随机分析

DOI: 10.3969/j.issn.1006-7043.201404051

Keywords: 有限体积法, 摄动法, Monte-Carlo法, 随机分析, 静力学, 计算效率

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究各种随机因素对结构分析及结构设计的影响,考虑有限体积法的基本方程离散简便,提出了将有限体积法与摄动法相结合来解决实体结构静力学随机分析的问题。采用摄动有限体积法建立了实体结构静力学随机分析的基本模型,推导了实体结构静力学随机分析的基本方程,计算了实体结构响应量的均值和方差等数字特征。通过算例分析,对比分析了有限体积法、Monte-Carlo法的计算结果:响应量的均值和方差的相对误差的最大值为0.59%,可以证明该方法计算精度较高;摄动有限体积法的计算时间为20 s,Monte-Carlo法的计算时间为110 000 s,说明该方法的计算效率高。

References

[1]  TANIGUCHI N, KOBAYASHI T. Finite volume method on the unstructured grid system [J]. Computers & Fluids, 1991, 19(3/4):287-295.
[2]  DARWISH M S, WHITEMAN J R, BEVIS M J. Numerical modelling of viscoelastic liquids using a finite-volume method [J]. Journal of Non-Newtonian Fluid Mechanics, 1992, 45(3): 311-337.
[3]  JENNY P, LEE S H, TCHELEPI H A. Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media [J]. Journal of Computational Physics, 2006, 217(2): 627-641
[4]  FRYER Y D, BAILEY C, CROSS M. A control volume procedure for solving the elastic stress-strain equations on an unstructured mesh [J]. Appl Math Modelling, 1991,15: 639-645.
[5]  WHEEL M A. A finite volume method for analyzing the bending deformation of thick and thin plates [J].Comput Meth Appl Mech Eng, 1997, 147: 199-208.
[6]  杨海天.有限体积法在固体力学中的应用[J].大连理工大学学报, 1995, 35(3): 296-298.YANG Haitian. Application of finite volume method in solid mechanics [J]. Journal of Dalian University of Technology, 1995, 35(3): 296-298.
[7]  杨海天.有限体积法在二维固体力学问题中的应用[J].计算结构力学及其应用,1996, 13(3): 84-92.YANG Haitian. Application of finite volume method in 2-dimensional problems of solid mechanics [J]. Computational Structural Mechanics and Applications, 1996, 13(3): 84-92.
[8]  陈虬, 刘先斌. 随机有限元法及其工程应用[M]. 成都: 西南交通大学出版社, 1993:10-34.CHEN Qiu, LIU Xianbin. Stochastic finite element method and its application in engineering [M].Chengdu: Southwest Jiaotong University Press, 1993:10-34.
[9]  安伟光, 朱卫兵, 严心池. 随机有限元法在不确定性分析中的应用[J].哈尔滨工程大学学报,2002,23(1): 132-135.AN Weiguang, ZHU Weibing, YAN Xinchi. Application of stochastic finite element method to analysis uncertainties [J]. Journal of Harbin Engineering University, 2002,23(1): 132-135.
[10]  朱位秋, 任永坚.随机场的局部平均与随机有限元[J].航空学报, 1986, 7 (6): 604-611.ZHU Weiqiu, REN Yongjian. Local average of random fields and stochastic finite element method [J]. Acta Aeronautica et Astronautica Sinica, 1986, 7 (6): 604-611.
[11]  朱位秋, 任永坚. 基于随机场局部平均的随机有限元法[J]. 固体力学学报, 1988(4): 261-271.ZHU Weiqiu, REN Yongjian. The stochastic finite element method based on Local average of random field [J]. Acta Mechanica Solida Sinica, 1988(4): 261-271.
[12]  安伟光, 蔡荫林, 陈卫东.随机结构系统可靠性分析与优化设计[M].哈尔滨: 哈尔滨工程大学出版社,2005: 36-70.AN Weiguang, CAI Yinlin, CHEN Weidong. Reliability analysis and optimal design of stochastic structural system[M]. Harbin: Harbin Engineering University Press, 2005: 36-70.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133