全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于StOMP稀疏方法的高光谱图像目标检测

DOI: 10.3969/j.issn.1006-7043.201404087

Keywords: 高光谱图像, 目标检测, 稀疏表示, StOMP算法, 快速运算

Full-Text   Cite this paper   Add to My Lib

Abstract:

稀疏表示方法已经被成功应用于高光谱图像目标检测领域,并且取得了较好的检测效果,但由于高光谱图像往往具有很大的数据量,传统的稀疏检测算法计算成本很高。针对这种情况,提出了应用StOMP算法的高光谱图像稀疏目标检测算法,对求解稀疏系数的步骤进行了改进,减少了此过程中的迭代次数,大幅度降低了运算量,提高了检测速度。使用了2组数据进行仿真实验,结果表明,StOMP算法的应用有效地提高了检测速度与检测精度。

References

[1]  王立国,赵春晖.高光谱图像处理技术[M].北京:国防工业出版社,2013.
[2]  MATTEOLI S, DIANI M, CORSINI G. A tutorial overview of anomaly detection in hyperspectral images [J]. IEEE A&E Systems Magazine, 2010, 25(7): 5-27.
[3]  DATT B, MCVICAR T R, Van NIEL T G, et al. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes [J]. IEEE T Geosci Remote, 2003, 41(6):1246-1259.
[4]  ZHAO Chunhui, LI Xiaohui, REN Jinchang, et al. Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery [J]. International Journal of Remote Sensing, 2013,34(24):8669-8684.
[5]  BANERJEE A, BURLINA P, DIEHL C. A support vector method for anomaly detection in hyperspectral imagery [J]. IEEE T GEOSCI REMOTE, 2006, 44(8):2282-2291.
[6]  KRAUT S, SCHARF L L. Adaptive subspace detectors [J]. IEEE T Signal Proces, 2001, 49(1):1-16.
[7]  赵春晖,成宝芝,杨伟超.利用约束非负矩阵分解的高光谱解混算法[J]. 哈尔滨工程大学学报, 2012, 33 (3): 377-382.ZHAO Chunhui, CHENG Baozhi, YANG Weichao.Algorithm for hyperspectral unmixing using constrained nonnegative matrix factorization [J]. Journal of Harbin Engineering University, 2012, 3(33): 377-382.
[8]  MANOLAKIS D, SHAW G. Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(1): 29-43.
[9]  赵春晖, 李杰, 梅峰. 核加权RX高光谱图像异常检测算法[J]. 红外与毫米波学报, 2010, 29(5): 378-382.ZHAO Chunhui, LI Jie, MEI Feng. A kernel weighted RX algorithm for anomaly detection in hyperspectral imagery [J]. J Infrared Millim Waves, 2010, 29(5): 378-382.
[10]  CHEN Y, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985.
[11]  DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.
[12]  宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报, 2012, 34(2): 268-272.SONG Xiangfa, JIAO Licheng. Classification of hyperspectral remote sensing image based on sparse representation and spectral Information [J]. Journal of Electronics & Information Technology, 2012, 34(2): 268-272.
[13]  CHEN Y, NASRABADI N M, TRAN T D. Sparse representation for target detection in hyperspectral imagery [J]. IEEE J Sel Top Quant, 2011, 5(3):629-634.
[14]  PAT Y C,REZAIIFA R, KRISHNAPRAS P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]//Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers, Signals, Systems and Computers. Los Alamitos, USA, 1993: 40-44.
[15]  赵春晖, 李晓慧, 朱海峰. 空间4-邻域稀疏表示的高光谱图像目标检测[J]. 哈尔滨工程大学学报, 2013, 34(9): 1-8.ZHAO Chunhui, LI Xiaohui, ZHU Haifeng.Hyperspectral imaging target detection algorithm based on spatial 4 neighborhood for sparse representation [J].Journal of Harbin Engineering University, 2013, 34(9): 1-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133