全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冠脉支架联接体波形对血管损伤与再狭窄的影响

DOI: 10.3969/j.issn.1006-7043.201408017

Keywords: 血管壁面力学, 有限元法, 冠脉支架, 再狭窄, 血管损伤, 柔顺性失配

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对冠脉支架植入术后的血管内再狭窄问题,建立了冠脉支架介入耦合系统的力学模型,研究了支架在血管内压握和扩张过程中的变形机理,探索了支架介入对血管损伤的力学原因。分析了N型、S型和C型冠脉支架的体内扩张性能,研究了支架联接体的几何结构对血管损伤与再狭窄的影响机理。理论研究表明:由于支架与血管的柔顺性失配,冠脉内膜在支架支撑体顶点附近存在较高的应力梯度,而且在相邻支撑体之间存在明显的内膜组织下垂。N型和S型支架介入引起的血管壁面应力梯度较大,内膜组织下垂显著,易于引起血管损伤形成内膜增生,C型支架介入引起的血管壁面应力分布相对均匀,内膜组织下垂较小,有利于减小血管损伤、降低血管的再狭窄程度。

References

[1]  LEWIS G. Material, fluid dynamics, and solid mechanics aspects of coronary artery stents: a state-of-the-art-review [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008, 86B(2): 569-590.
[2]  刘纯, 白象忠, 李小宝. 狭窄血管处管壁的变形与应力分析[J]. 工程力学, 2013, 30(2): 464-469.LIU Chun, BAI Xiangzhong, LI Xiaobao. Deformation and stress analysis of stenosed vessels [J]. Engineering Mechanics, 2013, 30(2): 464-469.
[3]  MARTIN D, BOYLE F. Computational structural modeling of coronary stent deployment: a review [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14(4): 331-348.
[4]  TIMOTHY J G, SHAWN C S, ANDREW R W, et al. A rapid and computational inexpensive method to virtually implant current and next-generation stents into subject-specific computational fluid dynamics models [J]. Annals of Biomedical Engineering, 2011, 39(5): 1423-1437.
[5]  申祥, 任国栋, 冯宝霖. 冠状动脉支架设计参数对支架弹性回弹性能的影响[J]. 功能材料, 2012, 43(22): 3114-3122.SHEN Xiang, REN Guodong, FENG Baolin. Effect of coronary stent design parameters on the mechanical property of the elastic recoil of stent [J]. Journal of Functional Materials, 2012, 43(22): 3114-3122.
[6]  毛志刚, 谭丽丽, 郑丰, 等. 无镍不锈钢冠脉支架力学行为的有限元模拟[J]. 材料研究学报, 2012, 26(2): 125-131.MAO Zhigang, TAN Lili, ZHENG Feng, et al. Finite element analysis on mechanical behaviors of nickel-free stainless steel coronary stent [J]. Chinese Journal of Materials Research, 2012, 26(2): 125-131.
[7]  LIM D, CHO S K, PARK W P, et al. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion [J]. Annals of Biomedical Engineering, 2008, 36(7): 1118-1129.
[8]  李宁, 张洪武. 冠脉支架纵向柔顺性数值模拟[J].计算力学学报, 2011, 28(3): 309-314.LI Ning, ZHANG Hongwu. Numerical research on longitudinal flexibility of a coronary stent [J]. Chinese Journal of Computational Mechanics, 2011, 28(3): 309-314.
[9]  李萍萍, 张若京. 具有周期结构的血管支架有限元分析[J]. 工程力学, 2012, 29(9): 369-374.LI Pingping, ZHANG Ruojing. Finite element analysis of stent with periodic structure [J]. Engineering Mechanics, 2012, 29(9): 369-374.
[10]  GU L X, ZHAO S J, ASWINI K M, et al. The relation between the arterial stress and restenosis rate after coronary stenting [J]. Journal of Medical Devices, 2010, 4(3): 031005-1-7.
[11]  CAPELLI C, GERVASO F, PETRINI L, et al. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry [J]. Medical Engineering & Physics, 2009, 31(4): 441-447.
[12]  JULIAN B, CLARK A M, LUCAS H T, et al. Effects of stent design parameters on normal artery wall mechanics [J]. Journal of Biomechanical Engineering, 2006, 128(5): 757-765.
[13]  HOUMAN Z, CAITRIONA L. Determination of the influence of stent strut thickness using the finite element method: implication for vascular injury and instent restenosis [J]. Medical Biology Engineering Computation, 2009, 47(4): 385-393.
[14]  WU W, WANG W Q, YANG D Z, et al. Stent expansion in curved vessel and their interactions: a finite element analysis[J]. Journal of Biomechanics, 2007, 40(11): 2580-2585.
[15]  ALIREZA K, MAHDI N, REZA R, et al. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery [J]. Medical & Biological Engineering & Computing, 2014, 52(7): 589-599.
[16]  OGDEN R W. Large deformation isotropic elasticity on the correlation of theory and experiment for compressible rubberlike solids [C]//Proceedings of the Royal Society of London. Series A: Mathematical and physical sciences Journal Impact Factor & Information, 1972, 328: 567-583.
[17]  HOLZAPFEL G A, SOMMER G, GASSER C T, et al. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling [J]. American Journal of Physiology. Heart and Circulatory Physiology, 2005, 289(5): 2048-2058.
[18]  SERRUYS P W, KUTRYK M J. Handbook of coronary stents [M]. 3rd ed. London: Martin Dunitz, 2000.
[19]  顾兴中, 程洁, 李俐军,等. 血管支架耦合系统血流动力学数值模拟与实验研究[J]. 东南大学学报:自然科学版, 2012, 42(6): 1089-1093.GU Xingzhong, CHENG Jie, LI Lijun, et al. Numerical simulation and experimental test of hemodynamics in vessel-stent coupling systems [J]. Journal of Southeast University: Natural Science Edition, 2012, 42(6): 1089-1093.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133