全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于孔隙尺度的方腔内多孔介质融化模拟研究

DOI: 10.3969/j.issn.1006-7043.201404044

Keywords: 多孔介质|孔隙尺度|融化|自然对流|格子Boltzmann方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于单松弛(LBGK)格子Boltzmann模型在用反弹格式处理无滑移边界时存在缺陷。基于孔隙尺度, 采用多松弛(MRT)格子Boltzmann模型研究封闭方腔内多孔介质的自然对流融化过程, 其中, 通过焓方法考虑相变潜热。分析了Rayleigh数和Prandtl数对融化的影响。结果表明:采用的多松弛模型能很好的预测导热和对流融化过程;多孔介质的导热融化界面不再与垂直壁面平行, 自然对流融化界面呈现不规则形状;Rayleigh数和Prandtl数对多孔介质的融化有较大影响。

References

[1]  MENCINGER J. Numerical simulation of melting in two-dimensional cavity using adaptive grid[J]. Journal of Computational Physics, 2004, 198(1): 243-264.
[2]  GOBIN D, BENARD C. Melting of metals driven by natural convection in the melt: influence of Prandtl and Rayleigh numbers[J]. Journal of Heat Transfer, 1992, 114(2): 521-524.
[3]  NOURGALIEV R. The lattice Boltzmann equation method: theoretical interpretation, numerics and implications[J]. International Journal of Multiphase Flow, 2003, 29(1): 117-169.
[4]  JIAUNG W S, CHUN J R H. Lattice Boltzmann method for the heat conduction problem with phase change[J]. Numerical Heat Transfer, Part B: An International Journal of Computation and Methodology, 2001, 39(2): 167-187.
[5]  CHAKRABORTY S, CHATTERJEE D. An enthalpy-based hybrid lattice-Boltzmann method for modelling solid-liquid phase transition in the presence of convective transport[J]. Journal of Fluid Mechanics, 2007, 592: 155-175.
[6]  JOHANN M, KUZNIK F, JOHANNES K, et al. Development and validation of a new LBM-MRT hybrid model with enthalpy formulation for melting with natural convection[J]. Physics Letters A, 2014, 378(4): 374-381.
[7]  LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6): 6546-6562.
[8]  GAO D Y, CHEN Z Q. Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media[J]. International Journal of Thermal Sciences, 2011, 50(4): 493-501.
[9]  CHEN Z, GAO D, SHI J. Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International Journal of Heat and Mass Transfer, 2014, 72: 646-655.
[10]  HUBER C, PARMIGIANI A, CHOPARD B, et al. Lattice Boltzmann model for melting with natural convection[J]. International Journal of Heat and Fluid Flow, 2008, 29(5): 1469-1480.
[11]  QIAN Y H, D’HUMIèRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. EPL (Europhysics Letters), 1992, 17(6): 479.
[12]  HE X, ZOU Q, LUO L S, et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J]. Journal of Statistical Physics, 1997, 87(1-2): 115-136.
[13]  GUO Z, ZHENG C. Analysis of lattice Boltzmann equation for microscale gas flows: Relaxation times, boundary conditions and the Knudsen layer[J]. International Journal of Computational Fluid Dynamics, 2008, 22(7): 465-473.
[14]  朱卫兵, 王猛, 陈宏, 等. 多孔介质内流体流动的格子Boltzmann模拟[J]. 化工学报, 2013, 64(S1): 33-40.ZHU Weibing, WANG Meng, CHEN Hong, et al. Lattice Boltzmann simulations for fluid flow through porous media[J]. CIESC Journal, 2013, 64(S1): 33-40.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133