章继峰, 王振清, 周健生, 等. 基于 Python-Abaqus复合材料代表性体积元的数值模型[J]. 航空材料工艺, 2009, 39(3): 25-29.ZHANG Jifeng, WANG Zhenqing, ZHOU Jiansheng, et al. Numerical modeling of composite representative volume element (RVE) based on python-abaqus[J]. Aerospace Materials and Technology, 2009, 39(3): 25-29.
[2]
VLOT A. Impact properties of fibre metal laminates[J]. Composites Engineering. 1993, 3(10): 911-927.
[3]
VLOT A. Impact loading on fibre metal laminates[J]. International Journal of Impact Engineering. 1996, 8(3): 291-307.
[4]
SINMAZ?ELIK T, AVCU E, BORA M ?, et al. A review: Fibre metal laminates, background, bonding types and appliedtest methods[J]. Materials Design, 2011, 32(7): 3671-3685.
[5]
VLOT A. Low velocity impact loading on fiber reinforced aluminium laminates (arall and glare) and other aircraft sheet materials.Rept LR-718[R]. Delft: Delft Univ of Technology, 1993.
[6]
曹春晓. 一代材料技术, 一代大型飞机[J]. 航空学报, 2008, 29(3): 701-706.CAO Chunxiao. One generation of material technology, one generation of large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 701-706.
[7]
陈勇, 庞宝君, 郑伟, 等. 纤维金属层板低速冲击实验和数值仿真[J]. 复合材料学报, 2014, 31(3): 733-740..CHEN Yong, PANG Baojun, ZHENG Wei, et al. Tests and numerical simulation on low velocity impact performance of fiber metal laminates[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 733-740..
[8]
马玉娥, 胡海威, 熊晓枫. 低速冲击下FML、铝板和复材的损伤对比[J]. 航空学报, 2014, 35(7): 1902-1911MA Yu’e, HU Haiwei, XIONG Xiaofeng. Comparison of damage in fibre metal laminates, aluminium and composite panel subjected to low-velocity impact[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1902-1911.
[9]
SEO H, HUNDLEY J, HAHN H T, et al. Numerical simulation of glass-fiber-reinforced aluminium laminates with diverse impact damage[J]. AIAA, 2010, 48(3): 676- 687.
[10]
SADIGHI M, P?RN?NEN T, ALDERLIESTEN R C, et al. Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber-metal laminates [J]. Applied Composite Materials, 2012, 19(3): 545-559.
[11]
JOHNSON G R, COOK W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. The Hague, Netherland, 1983: 541-547.
[12]
KAY G.Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model. Tech Rep DOT/FAA/AR-03/57[R].US Department of Transportation, Federal Aviation Administration, 2002.
[13]
LESUER D.Experimental investigations of material models for Ti-6AL4V and 2024-T3 aluminum.DOT/FAA/AR-00/25[R]. US Department of Transportation, 2000.
[14]
王振清, 雷红帅, 周博, 等.基于内聚力模型的形状记忆合金短纤维增强树脂基复合材料的模拟分析[J]. 复合材料学报, 2012, 29(5): 236-243.WANG Zhenqing, LEI Hongshuai, ZHOU Bo, et al. Simulation and analysis on short-cut shape memory alloy reinforced epoxy composite based on cohesive one model[J]. Acta Materiae Compositae Sinica, 2012, 29(5): 236-243.
[15]
郝扣安, 王振清, 周利民.不同铺层厚度复合材料的低速冲击特性与损伤模式研究[J].应用数学与力学, 2013, 34(7): 661-671.HAO Kouan, WANG Zhenqing, ZHOU Limin. Impact behaviors and damage modes of composites under low-velocity impact with different layup thicknesses[J]. Applied Mathematics and Mechanics, 2013, 34(7): 661-671.
[16]
HASHIN Z.Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334.
[17]
TAN S C. A progressive failure model for composite laminates containing opening[J]. Journal of Composite, 1991, 25(5): 556-577.
[18]
SEYED YAGHOUBI A, LIU Y, LIAW B. Low-velocity impact on Glare 5 fiber-metal laminates: influences of specimen thickness and impactor mass[J]. Journal of Aerospace Engineering, 2012, 25(3): 409-420.
[19]
SEYED YAGHOUBI A, LIAW B. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: experimental and numerical studies[J]. Composite Structures, 2012, 94(8): 2585-2598.