全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水下圆锥壳临界载荷-频率特性分析

DOI: 10.3969/j.issn.1006-7043.201401038

Keywords: 圆锥壳|波传播法|临界载荷|Galerkin法|无损预报

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对基于振动的数值仿真、振动实验预测方法的不足, 基于振动的水下圆锥壳临界载荷预报具有结构无损的优势, 提出了基于波传播法的水下圆锥壳失稳载荷的理论求解方法。通过建立静水压力下圆锥壳声-固耦合振动方程, 并使用波传播法和Galerkin法求解不同静水压下的频率特性。在处理耦合面处流体声载荷时将锥壳分解为多个柱壳微段的流体载荷的叠加。通过对水下圆锥壳的固有频率和静水压力的关系研究, 得出静压与固有频率平方近似呈线性关系这一重要结论, 并通过线性拟合求出临界载荷。结果对比证实了方法的正确性, 且具有简便、计算量小、易于参数优化的优点。

References

[1]  CRENWILGE O E, MUSTER J R D. Free vibration of ring and stringer stiffened conical shells[J]. Journal of the Acoustical Society of America, 1969, 46(1): 176-185.
[2]  CARESTA M, KESSISSOGLOU N J. Vibration of fluid loaded conical shells[J]. Journal of the Acoustical Society of America, 2008, 124(4): 2068-2077.
[3]  CARESTA M, KESSISSOGLOU N J. Free vibrational characteristics of isotropic coupled cylindrical-conical shells[J]. Journal of Sound and Vibration, 2010, 329(6): 733-751.
[4]  IRIE T, YAMADA G, TANAKA K. Natural frequencies of truncated conical shells[J]. Journal of Sound and Vibration, 1984, 92(3): 447-453.
[5]  GUO Y P. Fluid-loading effects on conical shells[J]. Journal of the Acoustical Society of America, 2008, 124(4): 2068-2077.
[6]  曹雄涛, 华宏星. 流体作用下正交各向异性圆锥壳的自由振动[J]. 振动与冲击, 2011, 30(11): 95-100.CAO Xiongtao, HUA Hongxing. Free vibration of orthotropic conical shell interacting with fluid[J]. Journal of Vibration and Shock, 2011, 30(11): 95-100.
[7]  WANG Yongjun, WAN Zhengquan. Strength analysis of cone shell under hydrostatic pressure[J]. Journal of Ship Mechanics, 2009, 13(6): 907-914.
[8]  李范春, 杜玲, 刘清风, 等.受压结构稳定性的无损检测分析方法研究[J]. 船舶力学, 2010, 14(4): 393-398.LI Fanchun, DU Ling, LIU Qingfeng, et al. No damage testing analyzed method research of the compress structure stability[J]. Journal of Ship Mechanics, 2010, 14(4): 393-398.
[9]  陈忱, 李天匀, 朱翔, 等. 基于波传播法的水下圆柱壳临界载荷-频率特性分析[J]. 中国造船, 2012, 53(1): 130-136.CHEN Chen, LI Tianyun, ZHU Xiang, et al. Frequency characteristics analysis for critical load of a submerged cylindrical shell based on wave propagation approach[J]. Shipbuilding of China, 2012, 53(1): 130-136.
[10]  陈忱, 李天匀, 朱翔, 等. 水下环肋圆柱壳弹性失稳临界载荷无损预报方法[J]. 海洋工程, 2014, 32(4): 89-95.CHEN Chen, LI Tianyun, ZHU Xiang, et al. Elastic critical pressure prediction of submerged ring-stiffened cylindrical shell based on frequency characteristics analysis[J]. The Ocean Engerneering, 2014, 32(4): 89-95.
[11]  黄克智, 夏之熙, 薛明德, 等. 板壳理论[M]. 北京: 清华大学出版社, 1987: 217-223.HUANG Kezhi, XIA Zhixi, XUE Mingde, et al. Theory of Plates and Shells[M]. Beijing:Tsinghua University press, 1987: 217-223.
[12]  BRUSH D O, ALMROTH B O. Buckling of bars, plates and shells[M]. New York: Mc Graw-Hill, 1975: 257-270.
[13]  LAM K.Y, HUA L. Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell[J]. Journal of Sound and Vibration, 1999, 223(2): 171 -195.
[14]  刘涛. 大深度潜水器结构分析与设计研究[D]. 无锡:中国船舶科学研究中心, 2001: 23-75.LIU Tao. Design and analysis of deep sea submersible structures[D]. Wuxi:China Ship Scientific Research Center, 2001: 23-75.
[15]  刘 涛. 大深度潜水器耐压壳体弹塑性稳定性简易计算方法[J]. 中国造船, 2001, 42(3): 9-14. LIU Tao. Simplified method of inelastic buckling analysis of deep submersible pressure hull[J]. Shipbuilding of China, 2001, 42 (3): 9-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133