全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于灰度化权值调整的水下彩色图像分割

DOI: 10.3969/j.issn.1006-7043.201403018

Keywords: 灰度化, 图像分割, 阈值分割, 水下彩色图像, 机器视觉, 彩色模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统自适应阈值法在水下图像分割过程中存在目标与背景粘连等问题, 提出一种基于灰度化权值调整的水下彩色图像分割方法。区别于传统阈值分割方法中灰度化权值固定且研究如何确定合适阈值的思路, 研究灰度化权值调整方法。本文方法利用统计得到的图像灰度信息来确定不同通道内目标与背景间灰度级差异性的大小, 提高差异性较大通道的比例, 以增强灰度化后图像中目标与背景的对比度, 同时减小差异性较小通道的比例, 以降低其对灰度化结果的干扰, 对灰度化后的图像进行阈值分割得到最终分割结果。针对水下作业的时序列图像, 设计了两步序列图像处理方式来降低耗时。通过4组水下对比实验以及耗时实验对方法的有效性进行了验证。

References

[1]  曹宇, 赵杰, 闫继宏.基于自定义颜色空间的快速图像分割方法[J].计算机科学, 2009, 36(2):265-267.CAO Yu, ZHAO Jie, YAN Jihong. Image segmentation method based on custom color space model[J]. Computer Science, 2009, 36(2): 265-267.
[2]  LIU Hanqiang, ZHAO Feng, JIAO Licheng. Fuzzy spectral clustering with robust spatial information for image segmentation[J]. Applied Soft Computing, 2012, 12: 3636-3647.
[3]  GIACOMO M, SONG K, CHOI, J Y. Underwater autonomous manipulation for intervention missions AUVs[J]. Ocean Engineering, 2009, 31(1): 15-23.
[4]  曾文静, 徐玉如, 万磊, 等.自主式水下机器人的光视觉管道探测跟踪系统[J].上海交通大学学报,2012,46(2):178-183.ZENG Wenjing, XU Yuru, WAN Lei, et al. Robotics vision-based system for autonomous underwater vehicle for an underwater pipeline tracker[J]. Journal of Shanhai Jiaotong University, 2012, 46(2): 178-183.
[5]  张铭钧, 万媛媛, 李煊.水中光视觉图像分割及目标提取方法[J].哈尔滨工程大学学报, 2013, 34(12):1580-1586.ZHANG Mingjun, WAN Yuanyuan, LI Xuan. Image segmentation and target extraction based on underwater optical vision [J]. Journal of Harbin Engineering University, 2013, 34(12): 1580-1586.
[6]  徐玉如, 李彭超.水下机器人发展趋势[J].自然杂志, 2011, 33(3):125-132.XU Yuru, LI Pengchao. Developing tendency of unmanned underwater vehicles[J]. Chinese Journal of Nature, 2011, 33(3): 125-132.
[7]  LI Z Y, ZHANG D, XU Y, et al. Modified local entropy-based transition region extraction and thresholding [J]. Applied Soft Computing, 2011, 11: 5630-5638.
[8]  章毓晋.图像工程(上册)[M].3版.北京:清华大学出版社, 2012:304-305.ZHANG Yujin. Image engineering(Ⅰ)[M]. 3rd Ed. Beijing: Tsinghua University Press, 2012: 304-305.
[9]  RANJANI J J, THIRUVENGADAM S J. Fast threshold selection algorithm for segmentation of synthetic aperture radar image[J]. Radar, Sonar & Navigation, IET, 2012, 6(8): 788-795.
[10]  陈林飞.基于分数变换光学的图像编码和信息处理技术研究[D].杭州:浙江大学, 2008:98-100.CHEN Linfei. Research on image encryption and information processing techniques based on fractional transform optics[D]. Hangzhou: Zhejiang University, 2008: 98-100.
[11]  XIA Hua. Human computer interactions for converting color image to gray[J]. Neurocomputing, 2012, 85(15): 1-5.
[12]  HEMALATA V B, SUBHASIS C. Laplacian based non-local means denoising of MR images with Rician noise[J]. Magnetic Resonance Imaging, 2013, 31(9): 1599-1610.
[13]  田媛.灰度图像无参考质量评价方法研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2010:39-41.TIAN Yuan. Study on no-reference quality assessment method for gray image[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2010: 39-41.
[14]  刘春燕.图像分割评价方法研究[D].西安:西安电子科技大学, 2011:29-32.LIU Chunyan. Survey on evaluation methods of image segmentation algorithms[D]. Xi’an: Xidian University, 2011: 29-32.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133