全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

嵌入技术的动态异构信息网络的演化聚类

DOI: 10.3969/j.issn.2014-0026.201410026

Keywords: 异构信息网络, 稀疏性, 演化聚类, 随机映射, 嵌入, 加权距离总和, 时间平滑

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究动态异构信息网络划分问题, 利用异构信息网络的稀疏性, 提出一种解决星型模式的动态异构信息网络的演化聚类算法。首先从相容的角度将异构信息网络转化为若干个相容的二部图, 并构造时间平滑二部图, 使其能够表达某时刻及先前时间结点间的关系;然后由随机映射和一种线性时间的求解程序快速计算出每个时间平滑二部图的近似commute time嵌入, 获得指示目标数据集的多个指示子集;最后计算指示同一个目标对象的所有指示数据与标号相同的类的中心点加权距离总和, 由k-means方法确定目标对象所属的类。经验证, 该算法划分动态异构信息网络的准确率较高, 计算速度较快。

References

[1]  KOUTIS I, MILLER G L, TOLLIVER D. Combinatorial preconditioners and multilevel solvers for problems in computer vision and image processing[J]. Computer Vision and Image Understanding, 2011, 115(12): 1638-1646.
[2]  SUN Yizhou, HAN Jiawei. Mining heterogeneous information networks:principles and methodologies[J]. Synthesis Lectures on Data Mining and Knowledge Discovery, 2012, 3(2):1-159.
[3]  SUN Yizhou, YU Yintao, HAN Jiawei. Rankclus: ranking- based clustering of heterogeneous information networks with star network schema[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2009: 797-806.
[4]  WANG R, Shi C, PHILIP S Y, WU B. Integrating clustering and ranking on hybrid heterogeneous information network[M].Berlin Advances in Knowledge Discovery and Data Mining. 2013: 583-594.
[5]  AGGARWAL C, XIE Y, PHILIP S Y, On dynamic link inference in heterogeneous networks[C]//SDM. 2013:415-426.
[6]  GAO Bin, LIU Tieyan, MA Weiying. Star-structured high-order heterogeous data co-clustering based on cosistent information theory[C]// ICDM’06. Hong Kong, China, 2006: 880-884.
[7]  LONG Bo, ZHANG Zhongfei,WU Xiaoyun, et al. Spectral clustering for multi-type relational data[C]//Proceedings of the 23rd International Conference on Machine Learning, ACM. 2006: 585-592.
[8]  AGGARWAL C, SUBBIAN K. Evolutionary network analysis: a survey[J]. ACM Computing Surveys (CSUR), 2014, 47(1):10.
[9]  GUPTA M, AGGARWAL C, HAN J, et al. Evolutionary clustering and analysis of bibliographic networks[C]// Advances in Social Networks Analysis and Mining (ASONAM).Kaohsiung, Taiwan, 2011: 63-70.
[10]  KHOA N L D, CHAWLA S. Large scale spectral clustering using resistance distance and Spielman-Teng solvers[J]. Discovery Science, 2012:7-21.
[11]  QIU H, HANCOCK E R. Clustering and embedding using commute times[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(11):1873-1890.
[12]  SPIELMAN D A, SRIVASTAVA N, Graph sparsi?cation by effective resistances[J]. SIAM Journal on Computing, 2011, 40(6): 1913-1926.
[13]  SPIELMAN D A, TENG Shanghua. Nearly-linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems[J]. SIAM Journal on Matrix Analysis and Applications, 2014, 35(3): 835-885.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133