全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于源数估计的无约束欠定盲源分离算法

DOI: 10.3969/j.issn.1006-7043.201308065

Keywords: 欠定盲源分离, 信源数目估计, 稀疏信号, Hough加窗法, 无约束分离, 梯度下降法

Full-Text   Cite this paper   Add to My Lib

Abstract:

信源数目的估计是欠定盲源分离的前提条件, 为了提高混合信号分离的准确性, 提出一种Hough加窗法。利用Hough变换的思想将观测信号转变为角度变量, 对变换域中的角度直方图进行加窗获得变换量的聚类区域, 其峰值数即为信号源的数目。在此基础上, 通过寻找变换量与混合矩阵列向量的关系可得到混合矩阵的估计值。提出一种无约束分离算法, 由内点法从散点图分布中选取合适的初始迭代值, 通过梯度下降法实现信号的分离。仿真实验结果表明,Hough加窗法具有较高的估计精度、较强的抗噪声性以及较低的稀疏敏感性, 无约束分离算法具有较好的分离效果。

References

[1]  COMON P. Independent component analysis: a new concept[J]. Signal Processing, Special Issue on Higher Order Statistics, 1994, 36(3): 287-314.
[2]  MAMMONE N, La FORESTA F,MORABITO F C. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA[J]. IEEE Sensors Journal, 2012, 12(3): 533-542.
[3]  TAKAHATA A K, NADALIN E Z, FERRARI R, et al. Unsupervised processing of geophysical signals: a review of some key aspects of blind deconvolution and blind source separation[J]. IEEE Signal Processing Magazine, 2012, 29(4): 27-35.
[4]  BADAWI W K M, CHIBELUSHI C C, PATWARY M N, et al. Specular-based illumination estimation using blind signal separation techniques[J]. IET Image Processing, 2012, 6(8): 1181-1191.
[5]  YANG Xiaomei. The application of blind signal separation in mobile communication[C]// 2011 3rd International Conference on Computer Research and Development (ICCRD). Shanghai, China, 2011: 274-277.
[6]  BOFILL P,ZIBULEVSKY M.Underdetermined blind source separation using sparse representations[J]. Signal Processing, 2001,81(11):2353-2362.
[7]  谭北海,谢胜利. 基于源信号数目估计的欠定盲分离[J].电子与信息学报,2008,30(4):863-867.TAN Beihai, XIE Shengli. Underdetermined blind separation based on source signals’ number estimation[J]. Journal of Electronics & Information Technology, 2008, 30(4):863-867.
[8]  张烨,方勇. 基于拉普拉斯势函数的欠定盲分离中源数的估计[J]. 信号处理,2009,25(11):1719-1725.ZHANG Ye, FANG Yong. A new method to estimate the number of the sources for underdetermined blind separation based on lapulacial potential function[J].Signal Processing,2009,25(11):1719-1725.
[9]  邱天爽,毕晓辉.稀疏分量分析在欠定盲源分离问题中的研究进展及应用[J].信号处理,2008,24(6):966-970.QIU Tianshuang,BI Xiaohui.Spares component analysis and application for underdetemined blind source separation[J].Signal Processing,2008,24(6):966-970.
[10]  BOFILL P, ZIBULEVSKY M. Blind separation of more sources than mixtures using sparsity of their short-time fourier transform[C]// Second International Workshop on Independent Component Analysis and Blind Signal Separation. Espoo, Finland, 2000: 87-92.
[11]  CORDERO E,NICOLA F,RODINO L.Sparsity of gabor representation of schrodinger propagators[J]. Applied and Computational Harmonic Analysis,2009, 26(3):357-370.
[12]  MA Jianwei,PLONKA G,CHAURIS H.A new sparse representation of seismic data using adaptive easy-path wavelet transform[J].IEEE Geoscience and Remote Sensing Letters, 2010,7(3):540-544.
[13]  HIROYUKI S, YUZO H.Blind source separation by a geometrical method[C]// Proceedings of the International Joint Conference on Neural Networks. Honolulu, USA,2002:1108-1114.
[14]  付宁,彭喜元.K-Hough欠定盲信道估计算法[J].电子测量与仪器学报,2008,22(5):63-67.FU Ning,PENG Xiyuan. K-Hough underdetermined blind mixing model recovery algorithm[J]. Journal of Electronic Measurement and Instrument, 2008,22(5):63-67.
[15]  何昭水,谢胜利,傅予力. 信号的稀疏性分析[J].自然科学进展,2006,16(9):1167-1173.HE Shaoshui, XIE Shengli, FU Yuli. Sparse analysis of signal[J]. Progress in Natural Science, 2006, 16(9): 1167-1173.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133