全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

弓网振动试验系统的改进幅相自适应控制设计

DOI: 10.3969/j.issn.1006-7043.201311040

Keywords: 幅相控制, 自适应控制, 弓网试验, 精确跟踪, 正弦振动, 有限状态机

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高弓网振动试验系统的正弦信号跟踪精度, 提出一种改进幅相自适应控制方法。在时域给出正弦信号的幅值误差、相位误差和中心位置误差的辨识公式, 采用线性插值的方式对相位误差以超过系统控制周期的精度进行辨识。结合辨识误差, 建立3个参数的迭代序列, 并在考虑低频快速性与高频稳定性的基础上, 对迭代速率进行分段处理。最后分别给出辨识和迭代部分有限状态机程序的计算机实现方法。由弓网振动试验系统的实验数据表明, 该改进算法能有效提高正弦信号的跟踪精确, 可广泛应用于工程领域。

References

[1]  TELLINI B, MACUCCI M, GIANNETTI R, et al. Line-pantograph EMI in railway systems [J]. IEEE Instrumentation & Measurement Magazine, 2001, 4(4):10-13.
[2]  WALTERS S, RACHID A, MPANDA A. On modeling and control of pantograph catenary systems[C]//International Conference on Pantograph-catenary Interaction Framework for Intelligent Control. Amiens: Universite de Picardie Jules Verne, 2011:54-63.
[3]  时菁, 杨志鹏, 张文轩,等. 关节式电分相处的弓网动态特性[J]. 中国铁道科学, 2014, 35(2):46-51.SHI Jing, YANG Zhipeng, ZHANG Wenxuan, et al. Pantograph-catenary dynamic characteristics of articulated phase insulator[J]. China Railway Science, 2014, 35(2): 46-51.
[4]  王万岗, 吴广宁, 高国强. 高速铁路弓网电弧试验系统[J]. 铁道学报, 2012, 34(4):22-27.WANG Wangang, WU Guangning, GAO Guoqiang. The pantograph-catenary arc test system for high-speed railways[J]. Journal of The China Railway Society, 2012, 34(4): 22-27.
[5]  吴学杰, 张卫华, 扬世杰. 应用于接触网/受电弓混合模拟试验台的计算机测控系统[J]. 计算机工程与应用, 2002, 12:213-216.WU Xuejie, ZHANG Weihua, YANG Shijie. The computer control and measure system applied to the pantograph/catenary mixed dynamic simulation system [J]. Computer Engineering and Applications, 2002, 12: 213-216.
[6]  张元生, 杨一栋, 马智周. 三轴转台谐波幅相自适应控制系统的设计[J]. 南京航空航天大学学报, 2004, 36(5):619-622.ZHANG Yuansheng, YANG Yidong, MA Zhizhou. Design of harmonic amplitude-phase adaptive control system in three-axis turntables[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2004, 36(5): 619-622.
[7]  MERRITT H E. Hydraulic control systems[M]. New York: John Wiley & Sons, 1967:68-70.
[8]  STOTEN D P,SHIMIZU N. The feedforward minimal control synthesis algorithm and its application to the control of shaking-tables[J]. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2007, 221(3): 423-444.
[9]  SHIN K. Adaptive control of active balancing systems for speed-varying rotating machinery[D]. (s.l.): Library of University of Michigan, 2001:113-120.
[10]  WEN Haoping. Design of adaptive and basis function based learning and repetitive control[D]. New York City: Library of Columbia University, 2001:87-92.
[11]  马建明, 黄其涛, 丛大成. 幅相控制策略在六自由度运动模拟器中的应用[J]. 哈尔滨工程大学学报, 2008, 29(11):1217-1221.MA Jianming, HUANG Qitao, CONG Dacheng. Application of the amplitude-phase control strategy in a 6-DOF motion simulator[J]. Journal of Harbin Engineering University, 2008, 29(11): 1217-1221.
[12]  YAO Jianjun, DI Duotao, JIANG Guilin, et al. Acceleration amplitude-phase regulation for electro-hydraulic servo shaking table based on LMS adaptive filtering algorithm[J]. International Journal of Control, 2012, 85(10): 1581-1592.
[13]  PLUMMER A R. A detailed dynamic model of a six-axis shaking table[J]. Journal of Earthquake Engineering, 2008, 12(4): 631-662.
[14]  STEFANO P, RICCARDO R, SALVATORE S, et al. Non-linear modelling and optimal control of a hydraulically actuated seismic isolator test rig[J]. Mechanical Systems and Signal Processing, 2013, 35(2):255-278.
[15]  李洪人. 液压控制系统[M]. 北京:国防工业出版社, 1990:55-58.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133