LEE S, CHOI S U S, LI S A, et al. Measuring thermal conductivity of fluids containing oxide nanoparticles[J]. Journal of Heat Transfer, 1999, 121(2): 280-289.
[2]
MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2-water based nanofluids[J]. International Journal of Thermal Sciences, 2005, 44(4): 367-373.
[3]
YU W, FRANCE D M, ROUTBORT J L, et al. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements[J]. Heat Transfer Engineering, 2008, 29(5): 432-460.
[4]
XUAN Y M, Li Q. Investigation on convective heat transfer and flow features of nanofluids[J]. Journal of Heat Transfer, 2003, 125(1): 151-155.
[5]
DAUNGTHONGSUK W, WONGWISES S. A critical review of convective heat transfer of nanofluids[J]. Renewable and Sustainable Energy Reviews, 2007, 11(5): 797-817.
[6]
GHADIMI A, SAIDUR R, METSELAAR H S C. A review of nanofluid stability properties and characterization in stationary conditions[J]. International Journal of Heat and Mass Transfer, 2011, 54(17): 4051-4068.
[7]
KLEINSTREUER C, FENG Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review[J]. Nanoscale Research Letters, 2011, 6(1): 1-13.
[8]
KEBLINSKI P, PHILLPOT S R, CHOI S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 855-863.
[9]
YU C J, RICHTER A G, DATTA A, et al. Observation of molecular layering in thin liquid films using X-ray reflectivity[J]. Physical Review Letters, 1999, 82(11): 2326-2329.
[10]
陈俊. 纳米流体输运性质作用机理的分子动力学模拟研究[D]. 北京:清华大学, 2011: 207-210.CHEN Jun. Mechanism of transport properties in nanofluids by molecular dynamics simulations[D]. Beijing: Tsinghua University, 2011: 207-210.
[11]
LI L, ZHANG Y, MA H, et al. Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids[J]. Journal of Nanoparticle Research, 2010, 12(3): 811-821.
[12]
LIANG Z, TSAI H L. Thermal conductivity of interfacial layers in nanofluids[J]. Physical Review E, 2011, 83(4): 041602.
[13]
YU W, CHOI S U S. The role of interfacial layer in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model[J]. Journal of Nanoparticle Research, 2003, 5(1/2): 167-171.
[14]
YU W, CHOI S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model[J]. Journal of Nanoparticle Research, 2004, 6(4): 355-361.
[15]
XUE Q, XU W M. A model of thermal conductivity of nanofluids with interfacial shells[J]. Materials Chemistry and Physics, 2005, 90(2): 298-301.
[16]
XIE H, FUJII M, ZHANG X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture[J]. International Journal of Heat and Mass Transfer, 2005, 48(14): 2926-2932.
[17]
NSOFOR E C, GADGE T. Investigations on the nanolayer heat transfer in nanoparticles-in-liquid suspensions[J]. ARPN Journal of Engineering and Applied Sciences, 2011, 6(1): 21-28.
[18]
LEONG K C, YANG C, MURSHED S M S. A model for the thermal conductivity of nanofluids-the effect of interfacial layer[J]. Journal of Nanoparticle Research, 2006, 8(2): 245-254.
[19]
DOROODCHI E, EVANS T M, MOGHTADERI B. Comments on the effect of liquid layering on the thermal conductivity of nanofluids[J]. Journal of Nanoparticle Research, 2009, 11(6): 1501-1507.
[20]
RIZVI I H, JAIN A, GHOSH S K, et al. Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer[J]. Heat and Mass Transfer, 2013, 49(4): 595-600.
[21]
SHAMS Z S, MANSOURI H, BAGHBAN M. A proposed model for calculating effective thermal conductivity of nanofluids, effect of nanolayer and non-uniform size of nanoparticles[J]. Journal of Basic and Applied Scientific Research, 2012, 2(9): 9370-9377.
[22]
LU S Y, SONG J L. Effective conductivity of composites with spherical inclusions: effect of coating and detachment[J]. Journal of Applied Physics, 1996, 79(2): 609-618.
[23]
TILLMAN P, HILL J M. Determination of nanolayer thickness for a nanofluid[J]. International Communications in Heat and Mass Transfer, 2007, 34(4): 399-407.
[24]
EASTMAN J A, CHOI S U S, LI S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Applied Physics Letters, 2001, 78(6): 718-720.
[25]
WANG B X, ZHOU L P, PENG X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles[J]. International Journal of Heat and Mass Transfer, 2003, 46(14): 2665-2672.
[26]
MURSHED S M S, LEONG K C, YANG C. A combined model for the effective thermal conductivity of nanofluids[J]. Applied Thermal Engineering, 2009, 29(11): 2477-2483.
[27]
HASHIMOTO T, FUJIMURA M, KAWAI H. Domain-boundary structure of styrene-isoprene block copolymer films cast from solutions. 5. molecular-weight dependence of spherical microdomains[J]. Macromolecules, 1980, 13(6): 1660-1669.
[28]
LI Z H, GONG Y J, PU M, et al. Determination of interface layer thickness of a pseudo two-phase system by extension of the Debye equation[J]. Journal of Physics D: Applied Physics, 2001, 34(14): 2085-2088.
[29]
YU C J, RICHTER A G, DATTA A, et al. Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study[J]. Physica B: Condensed Matter, 2000, 283(1): 27-31.
[30]
XUE L, KEBLINSKI P, PHILLPOT S R, et al. Effect of liquid layering at the liquid-solid interface on thermal transport[J]. International Journal of Heat and Mass Transfer, 2004, 47(19): 4277-4284.