全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

节镍奥氏体不锈钢Cr18Mn6Ni4N的组织及性能

DOI: 10.3969/j.issn.1006-7043.201405040

Keywords: 节镍, 奥氏体不锈钢, 力学性能, 耐蚀性能, 组织

Full-Text   Cite this paper   Add to My Lib

Abstract:

为节约镍资源, 研究了不同成分17.8~19.1%Cr, 3.93~6.05%Mn, 3.58~4.62%Ni, 0.32~0.42%N节镍型奥氏体不锈钢固溶后的力学性能和耐蚀性能, 以期获得可替代304不锈钢的新钢种。结果表明:Cr18.4Mn5.98Ni4.62N0.42不锈钢的力学性能和耐蚀性能与304不锈钢相当。分析了该成分不锈钢时效处理后的组织演变规律、冷变形过程中奥氏体稳定性及形变诱发马氏体相变过程。结果表明:800℃是Cr2N相析出的鼻尖温度, 随着时效时间的增加, 析出相首先以颗粒状形貌沿晶界析出, 而后以胞状析出方式向晶内生长。冷轧压下率18.5%时尚未发现形变诱发马氏体组织, 随着变形量增大, 片层状ε’马氏体含量先增加后减少至消失, 而板条状α’马氏体含量逐渐增多, 相对磁导率增加, 但其奥氏体稳定性远高于304不锈钢。可见, Cr18.4Mn5.98Ni4.62N0.42不锈钢可替代304不锈钢。

References

[1]  朱凌霄. 镍资源及利用[J].新疆有色金属, 2011 (5): 27-29.ZHU Lingxiao. Nickel resource and its utilization[J]. Xinjiang Nonferrous Metals, 2011 (5): 27-29.
[2]  李志, 高谦, 何冰,等. 节镍型奥氏体不锈钢1Cr17Mn9Ni4N的组织和力学性能[J]. 钢铁研究学报, 2005, 17(2): 68-71.LI Zhi, GAO Qian, HE Bing, et al. Microstructure and mechanical properties of 1Cr17Mn9Ni4N steel[J]. Journal of Iron and Steel Research, 2005, 17(2): 68-71.
[3]  MUKHERJEE M, KUMAR P T. Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels[J]. Acta Metallurgica Sinica(English Letters), 2013, 26(2):206-216.
[4]  SRIKANTH S, SARAVANAN P, SISODIA S, et al. Metallurgical investigation into the incidence of delayed catastrophic cracking in low nickel austenitic stainless steel coils[J]. Journal of Failure Analysis and Prevention, 2014, 14:220-235.
[5]  MONTICELLI C, CRIADO M, FAJARDO S, et al. Corrosion behaviour of a low Ni austenitic stainless steel in carbonated chloride-polluted alkali-activated fly ash mortar[J]. Cement and Concrete Research, 2014, 55: 49-58.
[6]  李长胜, 戴起勋, 陈康敏. 新型奥氏体不锈钢室温拉伸性能研究[J]. 热加工工艺, 2006, 35(20): 16-18.LI Changsheng, DAI Qixun, CHEN Kangmin. Study on tensile properties of new type austenitic stainless steel at room temperature[J]. Hot Working Technology, 2006, 35(20): 16-18.
[7]  MOAYED M H, NEWMAN R C. Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature[J]. Corrosion Science, 2006, 48(4): 1004-1018.
[8]  EHJATI P, KERMANPUR A, NAJAFIZADEH A. Influence of nitrogen alloying on properties of Fe-18Cr-12Mn-XN austenitic stainless steels[J]. Materials Science and Engineering: A, 2013, 588: 43-48.
[9]  程晓农, 戴起勋, 王安东. 奥氏体钢层错能与ε马氏体相变[J]. 钢铁研究学报, 2003, 15(2): 55-58.CHENG Xiaonong, DAI Qixun, WANG Andong. Stacking-fault energy and ε-martensite transformation of austenitic steels[J]. Journal of Iron and Steel Research, 2003, 15(2): 55-58.
[10]  赵西成, 朱达明. 10Cr14Ni6Mn4不锈钢的马氏体转变[J].金属热处理, 1997(12): 15-17.
[11]  RYOO D Y, KANG N, KANG C Y. Effect of Ni content on the tensile properties and strain-induced martensite transformation for 304 stainless steel[J]. Material Science Engineering A, 2011, 528(6): 2277 -2281.
[12]  杨钒, 黄建龙. 304 奥氏体不锈钢应变诱发马氏体的研究[J]. 材料热处理学报, 2012, 33(3): 104-109.YANG Fan, HUANG Jianglong. Study on strain induced martensite in 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(3): 104-109.
[13]  MESZAROS I, PROHASZKA J. Magnetic investigation of the effect of α’-martensite on the properties of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2005, 161: 162-168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133