全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于仿生学原理的射流表面减阻性能研究

DOI: 10.3969/j.issn.1006-7043.201310048

Keywords: 射流表面, 减阻, 数值模拟, 正交试验设计, 边界层

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对仿生射流表面减阻问题, 建立仿生射流表面模型, 利用SST k-ω湍流模型对其进行数值模拟, 所得射流速度曲线与实验数据吻合良好。研究射流流体对边界层厚度的影响规律, 探讨仿生射流表面的减阻机理。利用4因素3水平的正交试验, 对射流表面和光滑表面摩擦阻力进行对比分析, 得到了射流模型参数对减阻效果和节能效果的影响规律:在不考虑外加射流能量的情况下最大减阻率达50.41%;射流速度对节能效果的影响最大, 主流速度对节能效果的影响其次, 节能效率与主流速度成正比, 最大节能效率为276。射流改变了边界层内的流场结构, 使得射流表面的边界层厚度增大, 垂直于射流表面的速度梯度减小, 摩擦阻力减小。

References

[1]  张成春,任露泉,王晶,等. 旋成体仿生凹坑表面流场控制减阻仿真分析[J].兵工学报, 2009, 30(8): 1066-1071.ZHANG Chengchun, REN Luquan, WANG Jing, et al. Simulation on flow control for drag reduction of revolution body using dimpled surface[J]. Acta Armamentarii, 2009, 30(8): 1066-1071.
[2]  WALSH M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 1983, 21(4): 485-486.
[3]  王晋军, 兰世隆, 陈光. 沟槽面湍流边界层结构实验研究[J]. 力学学报, 2000, 32(5): 621-626.WANG Jinjun, LAN Shilong, CHEN Guang. Experimental study on the turbulent boundary layer flow over riblets surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2000, 32(5): 621-626.
[4]  封贝贝, 陈大融, 汪家道. 亚音速飞行器壁面沟槽减阻研究与应用[J]. 清华大学学报: 自然科学版, 2012, 52(7): 967-972.FENG Beibei, CHEN Darong, WANG Jiadao. Riblet surface drag reduction on subsonic aircraft[J]. Journal of Tsinghua University :Science and Technology, 2012, 52(7): 967-972.
[5]  葛铭纬, 许春晓, 黄伟希, 等. 基于壁面主动变形的湍流减阻控制研究[J]. 力学学报, 2013, 44(4):653-663.GE Mingwei, XU Chunxiao, HUANG Weixi, et al. Drag reduction control based on active wall deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 44(4):653-663.
[6]  YAO Yan, LU Chuanjing, SI Ting, et al. Water tunnel experimental investigation on the drag reduction characteristics of the travelling wavy wall[J]. Journal of Hydrodynamics, 2011, 23(1):65-70.
[7]  梅栋杰, 范宝春, 黄乐萍, 等. 槽道湍流的展向振荡电磁力壁面减阻[J]. 物理学报, 2010, 59(10): 6786-6792.MEI Dongjie, FAN Baochun, HUANG Leping, et al. Drag reduction in turbulent channel flow by spanwise oscillating Lorentz force[J]. Acta Physica Sinica, 2010, 59(10): 6786-6792.
[8]  TAKEHIKO S, HIROSHI M, KOKI M, et al. Turbulent drag reduction by means of alternating suction and blowing jets[J]. Fluid Dynamics Research, 2007, 39(7): 552-568.
[9]  赵刚, 谷云庆, 赵华琳, 等. 仿生射流表面孔径与射流速度耦合减阻特性数值模拟[J]. 哈尔滨工程大学学报, 2012, 33(8): 1001-1007.ZHAO Gang, GU Yunqing, ZHAO Hualin, et al. Numerical simulation of the drag reduction characteristies of a bionic jet surface aperture coupled with jet speed[J]. Journal of Harbin Engineering University, 2012, 33(8): 1001-1007.
[10]  ANDREOPOULOS J, RODI W. Experimental investigation of jets in a crossflow[J]. Journal of Fluid Mechanics, 1984, 138:93-101.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133