全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向离散优化问题的改进二元粒子群算法

DOI: 10.3969/j.issn.1006-7043.201306024

Keywords: 二元粒子群, Gray码, 混沌, 子代处理, 离散优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

二元粒子群算法被广泛用于求解离散组合优化问题。在求解离散优化问题时, 二元粒子群算法会出现解空间利用率低, 速度和状态趋同以及退化和波动等演化问题。针对这些问题, 提出一种改进的二元粒子群算法。算法使用Gray码演化基编码, 混沌初始化过程, 改进速度和状态调整方法以及子代处理方法用于提高种群利用率和种群多样性。在不同类型的检验函数以及多选择背包问题上, 和现有优化算法及其他二元粒子群算法相比, 改进算法能够获得较高的收敛精度以及较快的收敛速度, 体现出多离散优化问题的实际效用。

References

[1]  ZHU Hanhong, WANG Yi, WANG Kesheng, et al. Particle swarm optimization (PSO) for the constrained portfolio optimization problem[J]. Expert Systems with Applications, 2011, 38(8): 10161-10169.
[2]  ZHANG Zike, ZHOU Tao, ZHANG Yicheng. Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(1): 179-186.
[3]  WU Changjun, KALYANARAMAN A. An efficient parallel approach for identifying protein families in large-scale metagenomic data sets[C]//Proceedings of the 2008 ACM/IEEE Conference on Supercomputing[S.l.], 2008: 1-10.
[4]  CAVUSLU M, KARAKUZU C, KARAKAYA F. Neural identification of dynamic systems on FPGA with improved PSO learning[J]. Applied Soft Computing, 2012, 12(9): 2707-2718.
[5]  KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm[C]//Proceedings of the Conference on Systems, Man, and Cybernetics. Piscataway, USA, 1997: 4104-4109.
[6]  QIN Jin, LI Xin, YIN Yixin. An algorithmic framework of discrete particle swarm optimization[J]. Applied Soft Computing, 2012, 12:1125-1130.
[7]  MOJTABA A K, TOOSI K N. A novel binary particle swarm optimization[C]//Proceedings of the 15th Mediterranean Conference on Control and Automation.[S.l.], 2007: 33-41.
[8]  RATHI A, RATHI P, VIJAY R. Optimization of MSA with swift particle swarm optimization[J]. International Journal of Computer Allication, 2010, 12(8): 28-33.
[9]  GANESH M, KRISHNA R, MANIKANTAN K, et al. Entropy based binary particle swarm optimization and classification for ear detection original research article[J]. Engineering Applications of Artificial Intelligence, 2014, 27:115-128.
[10]  BANSAL J, DEEP K. A modified binary praticle swarm optimization for knapsack problems[J]. Applied Mathematics and Computation, 2012, 218(22): 11042-11069.
[11]  CHEN Enxiu, LI Jianqin, LIU Xiyu. In search of the essential binary discrete particle swarm[J]. Applied Soft Computing, 2011, 11: 3260-3269.
[12]  YANG Xiaohua, YANG Zhifeng, YIN Xinan, et al. Chaos gray-coded genetic algorithm and its application for pollution source identifications in convection-diffusion equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(8):1678-1688.
[13]  AIHARA K. Chaos and its applications[J]. Procedia IUTAM, 2012, 5: 199-203.
[14]  De JONG K A. An analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor:University of Michigan, 1975:196-249.
[15]  KHAN S, LI K F, MANNING E G, et al, Solving the knapsack problem for adaptive miltimedia system[J]. Studia Informatica: Special Issue on Cutting, Packing and Knapsacking Problems, 2001, 9:157-178.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133