未知环境下的移动机器人实时避障研究
DOI: 10.3969/j.issn.1006-7043.2009.07.006
Keywords: 机器人避障 模板匹配 模板更新 粒子滤波 移动机器人
Abstract:
针对未知环境下的移动机器人实时避障问题,设计了一种基于模板更新和模板匹配的避障算法.利用视觉传感器获取的场景信息与存储于机器人内部的模板图像进行匹配,确定机器人的可行区域和障碍区域.根据虚拟引力方法计算出机器人下一时刻的行进方向和行驶速度.鉴于场景光照变化情况,采用了一种基于粒子滤波的模板更新方法.为了验证算法的正确性和有效性,在室内不同的场景下做了大量的实验.实验结果表明:该方法能够实现可靠的障碍物检测,并引导机器人有效地躲避各种静态和动态障碍物,而且算法具有很好的实时性和鲁棒性.
References
[1] | 8. VERMAAK J.GODSILL S.PEREZ P Monte Carlo filtering for multi-target tracking and data association 2005(1)
|
[2] | 9. DOUCET A.GORDON N.KRISHNAMURTHY V Particle filters for state estimation of jump Markov linear systems 2001(3)
|
[3] | 10. DJURIC P M.KOTECHA J H Particle filtering 2003(5)
|
[4] | 11. 姚剑敏.辛琦.郭太良 一种基于粒子滤波的自适应相关跟踪算法 [期刊论文] -武汉理工大学学报(信息与管理工程版)2008(1)
|
[5] | 12. XUE M.SHAOHUA K Z.FATIH P Probabilistic visual tracking via robust template matching and incremental subspace update 2007
|
[6] | 1. BORENSTEIN J.KOREN Y The vector field histogram fast obstacle avoidance for mobile robots 1991(3)
|
[7] | 2. ULRICH I.BORENSTEIN J VFH*:local obstacle avoidance with look-ahead verification 2000
|
[8] | 3. ORIOLO G.ULIVI G.VENDITTELLI M Real-time map building and navigation for autonomous robots in unknown environments 1998(3)
|
[9] | 4. OHYA A.KOSAKA A.KAK A Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing 1998(6)
|
[10] | 5. KYOUNG S R.WANG H L.IN S K Obstacle detection and self-localization without camera calibration using projective invariant 1997
|
[11] | 6. TAYLOR C J.KRIEGMAN D J Vision-based motion planning and exploration algorithms for mobile robots 1998(3)
|
[12] | 7. YOUNG G S.HONG T H.HERMAN M.YANG J C S New visual invariant for obstacle detection using optical flow induced from general motion 1992
|
Full-Text