全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bone Mineralization in Celiac Disease

DOI: 10.1155/2012/198025

Full-Text   Cite this paper   Add to My Lib

Abstract:

Evidence indicates a well-established relationship between low bone mineral density (BMD) and celiac disease (CD), but data on the pathogenesis of bone derangement in this setting are still inconclusive. In patients with symptomatic CD, low BMD appears to be directly related to the intestinal malabsorption. Adherence to a strict gluten-free diet (GFD) will reverse the histological changes in the intestine and also the biochemical evidence of calcium malabsorption, resulting in rapid increase of BMD. Nevertheless, GFD improves BMD but does not normalize it in all patients, even after the recovery of intestinal mucosa. Other mechanisms of bone injury than calcium and vitamin D malabsorption are thought to be involved, such as proinflammatory cytokines, parathyroid function abnormalities, and misbalanced bone remodeling factors, most of all represented by the receptor activator of nuclear factor B/receptor activator of nuclear factor B-ligand/osteoprotegerin system. By means of dual-energy X-ray absorptiometry (DXA), it is now rapid and easy to obtain semiquantitative values of BMD. However, the question is still open about who and when submit to DXA evaluation in CD, in order to estimate risk of fractures. Furthermore, additional information on the role of nutritional supplements and alternative therapies is needed. 1. Epidemiology of Bone Involvement in CD Since 1980s, the most widely used tool in osteoporosis detection, treatment, and follow-up has been dual-energy X-ray absorptiometry (DXA) which showed a strong correlation between detection of bone mineral density (BMD) and fracture risk. Other procedures used to assess BMD include dual-photon absorptiometry (DPA), quantitative computed tomography (QTC), and ultrasound [1]. World Health Organization criteria for osteopenia and osteoporosis are defined by means of BMD as currently assessed by DXA indicating, respectively, a score between ?1 and ?2.5 and ≤2.5. Both these conditions consist of a quantitative and qualitative alteration in the arrangement of bone tissue with a consequent increase in bone fragility and susceptibility to fracture [2]. Several studies evaluated bone status in celiac disease (CD), both at diagnosis and after gluten-free diet (GFD), and to date, it has been recognized that bone involvement may be a frequent finding during CD. Nevertheless, studies focusing on the prevalence of bone derangement in celiac patients are still inconclusive since both old and recent findings fall in a wide range ([3, 11], see Table 1). Table 1: Prevalence of low bone mineral density in patients with

References

[1]  S. R. Cummings, D. Bates, and D. M. Black, “Clinical use of bone densitometry: scientific review,” Journal of the American Medical Association, vol. 288, no. 15, pp. 1889–1897, 2002.
[2]  P. Roschger, E. P. Paschalis, P. Fratzl, and K. Klaushofer, “Bone mineralization density distribution in health and disease,” Bone, vol. 42, no. 3, pp. 456–466, 2008.
[3]  X. A. McFarlane, A. K. Bhalla, D. E. Reeves, L. M. Morgan, and D. A. F. Robertson, “Osteoporosis in treated adult coeliac disease,” Gut, vol. 36, no. 5, pp. 710–714, 1995.
[4]  J. R. F. Walters, L. M. Banks, G. P. Butcher, and C. R. Fowler, “Detection of low bone mineral density by dual energy x ray absorptiometry in unsuspected suboptimally treated coeliac disease,” Gut, vol. 37, no. 2, pp. 220–224, 1995.
[5]  T. Valdimarsson, O. L?fman, G. Toss, and M. Str?m, “Reversal of osteopenia with diet in adult coeliac disease,” Gut, vol. 38, no. 3, pp. 322–327, 1996.
[6]  J. C. Bai, D. Gonzalez, C. Mautalen et al., “Long-term effect of gluten restriction on bone mineral density of patients with coeliac disease,” Alimentary Pharmacology and Therapeutics, vol. 11, no. 1, pp. 157–164, 1997.
[7]  T. Kemppainen, H. Kr?ger, E. Janatuinen et al., “Osteoporosis in adult patients with celiac disease,” Bone, vol. 24, no. 3, pp. 249–255, 1999.
[8]  C. Sategna-Guidetti, S. B. Grosso, S. Grosso et al., “The effects of 1-year gluten withdrawal on bone mass, bone metabolism and nutritional status in newly-diagnosed adult coeliac disease patients,” Alimentary Pharmacology and Therapeutics, vol. 14, no. 1, pp. 35–43, 2000.
[9]  D. Meyer, S. Stavropolous, B. Diamond, E. Shane, and P. H. R. Green, “Osteoporosis in a North American adult population with celiac disease,” American Journal of Gastroenterology, vol. 96, no. 1, pp. 112–119, 2001.
[10]  M. E. F. A. Motta, M. E. N. De Faria, and G. A. P. Da Silva, “Prevalence of low bone mineral density in children and adolescents with celiac disease under treatment,” Sao Paulo Medical Journal, vol. 127, no. 5, pp. 278–282, 2009.
[11]  A. Vilppula, K. Kaukinen, L. Luostarinen, et al., “Clinical benefit of gluten-free diet in screen-detected older celiac disease patients,” BMC Gastroenterology, vol. 11, no. 16, article 136, 2011.
[12]  D. R. Duerksen and W. D. Leslie, “Positive celiac disease serology and reduced bone mineral density in adult women,” Canadian Journal of Gastroenterology, vol. 24, no. 2, pp. 103–107, 2010.
[13]  W. F. Stenson, R. Newberry, R. Lorenz, C. Baldus, and R. Civitelli, “Increased prevalence of celiac disease and need for routine screening among patients with osteoporosis,” Archives of Internal Medicine, vol. 165, no. 4, pp. 393–399, 2005.
[14]  E. Lindh, S. Ljunghall, K. Larsson, and B. Lavo, “Screening for antibodies against gliadin in patients with osteoporosis,” Journal of Internal Medicine, vol. 231, no. 4, pp. 403–406, 1992.
[15]  T. Karakan, O. Ozyemisci-Taskiran, Z. Gunendi, F. Atalay, and C. Tuncer, “Prevalence of IgA-antiendomysial antibody in a patient cohort with idiopathic low bone mineral density,” World Journal of Gastroenterology, vol. 13, no. 21, pp. 2978–2982, 2007.
[16]  K. J. Mather, J. B. Meddings, P. L. Beck, R. B. Scott, and D. A. Hanley, “Prevalence of IgA-antiendomysial antibody in asymptomatic low bone mineral density,” American Journal of Gastroenterology, vol. 96, no. 1, pp. 120–125, 2001.
[17]  A. V. Stazi, A. Trecca, and B. Trinti, “Osteoporosis in celiac disease and in endocrine and reproductive disorders,” World Journal of Gastroenterology, vol. 14, no. 4, pp. 498–505, 2008.
[18]  S. L. Teitelbaum, “Bone resorption by osteoclasts,” Science, vol. 289, no. 5484, pp. 1504–1508, 2000.
[19]  M. F. Holick, “Medical progress: vitamin D deficiency,” The New England Journal of Medicine, vol. 357, no. 3, pp. 266–281, 2007.
[20]  N. Molteni, M. T. Bardella, G. Vezzoli, E. Pozzoli, and P. Bianchi, “Intestinal calcium absorption as shown by stable strontium test in celiac disease before and after gluten-free diet,” American Journal of Gastroenterology, vol. 90, no. 11, pp. 2025–2028, 1995.
[21]  K. W. Colston, A. G. Mackay, C. Finlayson, J. C. Y. Wu, and J. D. Maxwell, “Localisation of vitamin D receptor in normal human duodenum and in patients with coeliac disease,” Gut, vol. 35, no. 9, pp. 1219–1225, 1994.
[22]  M. Pazianas, G. P. Butcher, J. M. Subhani et al., “Calcium absorption and bone mineral density in celiacs after long term treatment with gluten-free diet and adequate calcium intake,” Osteoporosis International, vol. 16, no. 1, pp. 56–63, 2005.
[23]  M. Staun and S. Jarnum, “Measurement of the 10,000-molecular weight calcium-binding protein in small-intestinal biopsy specimens from patients with malabsorption syndromes,” Scandinavian Journal of Gastroenterology, vol. 23, no. 7, pp. 827–832, 1988.
[24]  P. L. Selby, M. Davies, J. E. Adams, and E. B. Mawer, “Bone loss in celiac disease is related to secondary hyperparathyroidism,” Journal of Bone and Mineral Research, vol. 14, no. 4, pp. 652–657, 1999.
[25]  T. Valdimarsson, G. Toss, O. L?fman, and M. Str?m, “Three years' follow-up of bone density in adult coeliac disease: significance of secondary hyperparathyroidism,” Scandinavian Journal of Gastroenterology, vol. 35, no. 3, pp. 274–280, 2000.
[26]  B. Lemieux, M. Boivin, J. H. Brossard et al., “Normal parathyroid function with decreased bone mineral density in treated celiac disease,” Canadian Journal of Gastroenterology, vol. 15, no. 5, pp. 302–307, 2001.
[27]  M. C. Fornari, S. Pedreira, S. Niveloni et al., “Pre- and post-treatment serum levels of cytokines IL-1β, IL-6, and IL- 1 receptor antagonist in celiac disease. Are they related to the associated osteopenia?” American Journal of Gastroenterology, vol. 93, no. 3, pp. 413–418, 1998.
[28]  H. Tilg, A. R. Moschen, A. Kaser, A. Pines, and I. Dotan, “Gut, inflammation and osteoporosis: basic and clinical concepts,” Gut, vol. 57, no. 5, pp. 684–694, 2008.
[29]  C. E. Fiore, P. Pennisi, G. Ferro et al., “Altered osteoprotegerin/RANKL ratio and low bone mineral density in celiac patients on long-term treatment with gluten-free diet,” Hormone and Metabolic Research, vol. 38, no. 6, pp. 417–422, 2006.
[30]  P. L. Riches, E. McRorie, W. D. Fraser, C. Determann, R. Van't Hof, and S. H. Ralston, “Osteoporosis associated with neutralizing autoantibodies against osteoprotegerin,” The New England Journal of Medicine, vol. 361, no. 15, pp. 1459–1465, 2009.
[31]  T. Larussa, E. Suraci, I. Nazionale, et al., “No evidence of circulating autoantibodies against osteoprotegerin in patients with celiac disease,” World Journal of Gastroenterology, vol. 18, no. 14, pp. 1622–1627, 2012.
[32]  M. T. Bardella, C. Fredella, L. Prampolini, N. Molteni, A. M. Giunta, and P. A. Bianchi, “Body composition and dietary intakes in adult celiac disease patients consuming a strict gluten-free diet,” American Journal of Clinical Nutrition, vol. 72, no. 4, pp. 937–939, 2000.
[33]  L. Kinsey, S. T. Burden, and E. Bannerman, “A dietary survey to determine if patients with coeliac disease are meeting current healthy eating guidelines and how their diet compares to that of the British general population,” European Journal of Clinical Nutrition, vol. 62, no. 11, pp. 1333–1342, 2008.
[34]  C. Ciacci, L. Maurelli, M. Klain et al., “Effects of dietary treatment on bone mineral density in adults with celiac disease: factors predicting response,” American Journal of Gastroenterology, vol. 92, no. 6, pp. 992–996, 1997.
[35]  M. P. Caraceni, N. Molteni, M. T. Bardella, S. Ortolani, A. Nogara, and P. A. Bianchi, “Bone and mineral metabolism in adult celiac disease,” American Journal of Gastroenterology, vol. 83, no. 3, pp. 274–277, 1988.
[36]  C. M. Gordon, L. K. Bachrach, T. O. Carpenter, G. Karsenty, and F. Rauch, “Bone health in children and adolescents: a symposium at the annual meeting of the Pediatric Academic Societies/Lawson Wilkins Pediatric Endocrine Society, May 2003,” Current Problems in Pediatric and Adolescent Health Care, vol. 34, no. 6, pp. 226–242, 2004.
[37]  C. Tau, C. Mautalen, S. De Rosa, A. Roca, and X. Valenzuela, “Bone mineral density in children with celiac disease. Effect of a gluten-free diet,” European Journal of Clinical Nutrition, vol. 60, no. 3, pp. 358–363, 2006.
[38]  M. S. Scotta, “Bone mineralization and body composition in young patients with celiac disease,” American Journal of Gastroenterology, vol. 92, no. 8, pp. 1331–1334, 1997.
[39]  C. Zanchi, G. Di Leo, L. Ronfani, S. Martelossi, T. Not, and A. Ventura, “Bone metabolism in celiac disease,” Journal of Pediatrics, vol. 153, no. 2, pp. 262–265, 2008.
[40]  G. Barera, S. Beccio, M. C. Proverbio, and S. Mora, “Longitudinal changes in bone metabolism and bone mineral content in children with celiac disease during consumption of a gluten-free diet,” American Journal of Clinical Nutrition, vol. 79, no. 1, pp. 148–154, 2004.
[41]  D. Giovenale, C. Meazza, G. M. Cardinale et al., “The prevalence of growth hormone deficiency and celiac disease in short children,” Clinical Medicine and Research, vol. 4, no. 3, pp. 180–183, 2006.
[42]  G. Federico, T. Favilli, L. Cinquanta, C. Ughi, and G. Saggese, “Effect of celiac disease and gluten-free diet on growth hormone-binding protein, insulin-like growth factor-I, and insulin-like growth factor-binding proteins,” Hormone Research, vol. 48, no. 3, pp. 108–114, 1997.
[43]  U. H. G. Jansson, B. Kristiansson, P. Magnusson, L. Larsson, K. Albertsson-Wikland, and R. Bjarnason, “The decrease of IGF-I, IGF-binding protein-3 and bone alkaline phosphatase isoforms during gluten challenge correlates with small intestinal inflammation in children with coeliac disease,” European Journal of Endocrinology, vol. 144, no. 4, pp. 417–423, 2001.
[44]  M. C. Maggio, G. Corsello, G. Iacono et al., “Gluten-free diet impact on leptin levels in asymptomatic coeliac adolescents: one year of follow-up,” Hormone Research, vol. 67, no. 2, pp. 100–104, 2007.
[45]  J. A. Garrote, E. Gómez-González, D. Bernardo, E. Arranz, and F. Chirdo, “Celiac disease pathogenesis: the proinflammatory cytokine network,” Journal of Pediatric Gastroenterology and Nutrition, vol. 47, supplement 1, pp. S27–S32, 2008.
[46]  S. Mora, “Celiac disease in children: impact on bone health,” Reviews in Endocrine and Metabolic Disorders, vol. 9, no. 2, pp. 123–130, 2008.
[47]  P. Mariani, M. G. Viti, M. Montuori et al., “The gluten-free diet: a nutritional risk factor for adolescents with celiac disease?” Journal of Pediatric Gastroenterology and Nutrition, vol. 27, no. 5, pp. 519–523, 1998.
[48]  D. R. Mager, J. Qiao, and J. Turner, “Vitamin D and K status influences bone mineral density and bone accrual in children and adolescents with celiac disease,” European Journal of Clinical Nutrition, vol. 66, no. 4, pp. 488–495, 2012.
[49]  S. Blazina, N. Bratanic, A. S. Campa, R. Blagus, and R. Orel, “Bone mineral density and importance of strict gluten-free diet in children and adolescents with celiac disease,” Bone, vol. 47, no. 3, pp. 598–603, 2010.
[50]  N. R. Lewis and B. B. Scott, “Should patients with coeliac disease have their bone mineral density measured?” European Journal of Gastroenterology and Hepatology, vol. 17, no. 10, pp. 1065–1070, 2005.
[51]  T. Kemppainen, H. Kr?ger, E. Janatuinen et al., “Bone recovery after a gluten-free diet: a 5-year follow-up study,” Bone, vol. 25, no. 3, pp. 355–360, 1999.
[52]  D. Margoni, G. Chouliaras, G. Duscas, et al., “Bone health in children with celiac disease assessed by dual X-ray absorptiometry: effect of gluten-free diet and predictive value of serum biochemical indices,” Journal of Pediatric Gastroenterology and Nutrition, vol. 54, no. 5, pp. 680–684, 2012.
[53]  A. G. Kalayci, A. Kansu, N. Girgin, O. Kucuk, and G. Aras, “Bone mineral density and importance of a gluten-free diet in patients with celiac disease in childhood,” Pediatrics, vol. 108, no. 5, p. E89, 2001.
[54]  R. I. Gafni and J. Baron, “Overdiagnosis of osteoporosis in children due to misinterpretation of Dual-Energy X-ray Absorptiometry (DEXA),” Journal of Pediatrics, vol. 144, no. 2, pp. 253–257, 2004.
[55]  D. Marshall, O. Johnell, and H. Wedel, “Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures,” British Medical Journal, vol. 312, no. 7041, pp. 1254–1259, 1996.
[56]  M. I. P. Sánchez, A. Mohaidle, A. Baistrocchi et al., “Risk of fracture in celiac disease: gender, dietary compliance, or both?” World Journal of Gastroenterology, vol. 17, no. 25, pp. 3035–3042, 2011.
[57]  M. R. Jafri, C. W. Nordstrom, J. A. Murray et al., “Long-term fracture risk in patients with celiac disease: a population-based study in Olmsted County, Minnesota,” Digestive Diseases and Sciences, vol. 53, no. 4, pp. 964–971, 2008.
[58]  K. Thomason, J. West, R. F. A. Logan, C. Coupland, and G. K. T. Holmes, “Fracture experience of patients with coeliac disease: a population based survey,” Gut, vol. 52, no. 4, pp. 518–522, 2003.
[59]  P. Vestergaard and L. Mosekilde, “Fracture risk in patients with celiac disease, Crohn's disease, and ulcerative colitis: a nationwide follow-up study of 16,416 patients in Denmark,” American Journal of Epidemiology, vol. 156, no. 1, pp. 1–10, 2002.
[60]  J. R. F. Walters and D. A. van Heel, “Detecting the risks of osteoporotic fractures in coeliac disease,” Gut, vol. 52, no. 8, pp. 1229–1230, 2003.
[61]  U. S. Kavak, A. Yüce, N. Ko?ak et al., “Bone mineral density in children with untreated and treated celiac disease,” Journal of Pediatric Gastroenterology and Nutrition, vol. 37, no. 4, pp. 434–436, 2003.
[62]  N. Molteni, M. P. Caraceni, M. T. Bardella, S. Ortolani, G. G. Gandolini, and P. Bianchi, “Bone mineral density in adult celiac patients and the effect of gluten-free diet from childhood,” American Journal of Gastroenterology, vol. 85, no. 1, pp. 51–53, 1990.
[63]  G. Barera, S. Mora, P. Brambilla et al., “Body composition in children with celiac disease and the effects of a gluten-free diet: a prospective case-control study,” American Journal of Clinical Nutrition, vol. 72, no. 1, pp. 71–75, 2000.
[64]  C. Cellier, C. Flobert, C. Cormier, C. Roux, and J. Schmitz, “Severe osteopenia in symptom-free adults with a childhood diagnosis of coeliac disease,” The Lancet, vol. 355, no. 9206, p. 806, 2000.
[65]  X. A. McFarlane, A. K. Bhalla, and D. A. F. Robertson, “Effect of a gluten free diet on osteopenia in adults with newly diagnosed coeliac disease,” Gut, vol. 39, no. 2, pp. 180–184, 1996.
[66]  V. D. Capriles, L. A. Martini, and J. A. G. Arêas, “Metabolic osteopathy in celiac disease: importance of a gluten-free diet,” Nutrition Reviews, vol. 67, no. 10, pp. 599–606, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133