全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Tissue Architectural Changes between Radiofrequency Ablation and Cryospray Ablation in Barrett’s Esophagus Using Endoscopic Three-Dimensional Optical Coherence Tomography

DOI: 10.1155/2012/684832

Full-Text   Cite this paper   Add to My Lib

Abstract:

Two main nonsurgical endoscopic approaches for ablating dysplastic and early cancer lesions in the esophagus have gained popularity, namely, radiofrequency ablation (RFA) and cryospray ablation (CSA). We report a uniquely suited endoscopic and near-microscopic imaging modality, three-dimensional (3D) optical coherence tomography (OCT), to assess and compare the esophagus immediately after RFA and CSA. The maximum depths of architectural changes were measured and compared between the two treatment groups. RFA was observed to induce 230~260? m depth of architectural changes after each set of ablations over a particular region, while CSA was observed to induce edema-like spongiform changes to ~640? m depth within the ablated field. The ability to obtain micron-scale depth-resolved images of tissue structural changes following different ablation therapies makes 3D-OCT an ideal tool to assess treatment efficacy. Such information could be potentially used to provide real-time feedback for treatment dosing and to identify regions that need further retreatment. 1. Introduction Radiofrequency ablation (RFA) and cryospray ablation (CSA) are recently developed methods that utilize thermal gradients to treat dysplastic and early cancer lesions of the esophagus, such as those arising in the setting of Barrett’s esophagus (BE). Both therapeutic technologies allow broad and superficial treatment fields for BE [1–8]. Recent clinical trials using RFA treatment have shown that complete eradication of dysplasia (CE-D) was achieved in 98% and 93% of patients with low-grade dysplasia (LGD) and high-grade dysplasia (HGD) at two-year followup [9]. Complete eradication of intestinal metaplasia (CE-IM) was achieved in 92% of patients with nondysplastic BE (NDBE) at up to 5 years of followup [10]. CSA is a newer therapeutic technology, so fewer large-scale clinical trials have been conducted. However, several pilot studies have shown that CSA is highly effective in eradicating HGD [6–8]. Complete eradication of the HGD, CE-D, and CE-IM in 94%, 88%, and 53% of BE patients was reported in a multicenter study [8]. Another multicenter study also reported 97%, 87%, and 57% complete eradication of HGD, CE-D, and CE-IM at 10.5 months of followup [7]. Although these studies indicate that both therapeutic technologies allow broad and superficial treatment fields for BE, repeated RFA/CSA treatments were generally required to achieve complete treatment response. On average, CE-IM was achieved after over 3.4 sessions using RFA [4, 9, 10] and 4.2 sessions using CSA [8, 11] for patients with

References

[1]  R. D. Odze and G. Y. Lauwers, “Histopathology of Barrett's esophagus after ablation and endoscopic mucosal resection therapy,” Endoscopy, vol. 40, no. 12, pp. 1008–1015, 2008.
[2]  J. J. G. H. M. Bergman, “Radiofrequency ablation—great for some or justified for many?” The New England Journal of Medicine, vol. 360, no. 22, pp. 2353–2355, 2009.
[3]  C. Ell, O. Pech, and A. May, “Radiofrequency ablation in Barrett's esophagus,” The New England Journal of Medicine, vol. 361, no. 10, article 1021, 2009.
[4]  N. J. Shaheen, P. Sharma, B. F. Overholt et al., “Radiofrequency ablation in Barrett's esophagus with dysplasia,” The New England Journal of Medicine, vol. 360, no. 22, pp. 2277–2288, 2009.
[5]  R. E. Pouw, J. J. Gondrie, C. M. Sondermeijer et al., “Eradication of Barrett esophagus with early neoplasia by radiofrequency ablation, with or without endoscopic resection,” Journal of Gastrointestinal Surgery, vol. 12, no. 10, pp. 1627–1637, 2008.
[6]  M. H. Johnston, J. A. Eastone, J. D. Horwhat, J. Cartledge, J. S. Mathews, and J. R. Foggy, “Cryoablation of Barrett's esophagus: a pilot study,” Gastrointestinal Endoscopy, vol. 62, no. 6, pp. 842–848, 2005.
[7]  N. J. Shaheen, B. D. Greenwald, A. F. Peery et al., “Safety and efficacy of endoscopic spray cryotherapy for Barrett's esophagus with high-grade dysplasia,” Gastrointestinal Endoscopy, vol. 71, no. 4, pp. 680–685, 2010.
[8]  B. D. Greenwald, J. A. Dumot, J. D. Horwhat, C. J. Lightdale, and J. A. Abrams, “Safety, tolerability, and efficacy of endoscopic low-pressure liquid nitrogen spray cryotherapy in the esophagus,” Diseases of the Esophagus, vol. 23, no. 1, pp. 13–19, 2010.
[9]  N. J. Shaheen, B. F. Overholt, R. E. Sampliner et al., “Durability of radiofrequency ablation in Barrett's esophagus with dysplasia,” Gastroenterology, vol. 141, no. 2, pp. 460–468, 2011.
[10]  D. E. Fleischer, B. F. Overholt, V. K. Sharma et al., “Endoscopic radiofrequency ablation for Barretts esophagus: 5-year outcomes from a prospective multicenter trial,” Endoscopy, vol. 42, no. 10, pp. 781–789, 2010.
[11]  J. A. Dumot, J. J. Vargo, G. W. Falk, L. Frey, R. Lopez, and T. W. Rice, “An open-label, prospective trial of cryospray ablation for Barrett's esophagus high-grade dysplasia and early esophageal cancer in high-risk patients,” Gastrointestinal Endoscopy, vol. 70, no. 4, pp. 635–644, 2009.
[12]  M. H. Johnston, “Cryotherapy and other newer techniques,” Gastrointestinal Endoscopy Clinics of North America, vol. 13, no. 3, pp. 491–504, 2003.
[13]  H. Barr, N. Stone, and B. Rembacken, “Endoscopic therapy for Barrett's oesophagus,” Gut, vol. 54, no. 6, pp. 875–884, 2005.
[14]  A. Das, C. Wells, H. J. Kim, D. E. Fleischer, M. D. Crowell, and V. K. Sharma, “An economic analysis of endoscopic ablative therapy for management of nondysplastic Barrett's esophagus,” Endoscopy, vol. 41, no. 5, pp. 400–408, 2009.
[15]  J. M. Inadomi, M. Somsouk, R. D. Madanick, J. P. Thomas, and N. J. Shaheen, “A cost-utility analysis of ablative therapy for Barrett's esophagus,” Gastroenterology, vol. 136, no. 7, pp. 2101–2114, 2009.
[16]  N. J. Shaheen and D. J. Frantz, “When to consider endoscopic ablation therapy for Barrett's esophagus,” Current Opinion in Gastroenterology, vol. 26, no. 4, pp. 361–366, 2010.
[17]  D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991.
[18]  G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human gastrointestinal tissue using optical coherence tomography,” American Journal of Gastroenterology, vol. 92, no. 10, pp. 1800–1804, 1997.
[19]  B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography,” Gastrointestinal Endoscopy, vol. 51, no. 4, pp. 467–474, 2000.
[20]  X. D. Li, S. A. Boppart, J. Van Dam et al., “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus,” Endoscopy, vol. 32, no. 12, pp. 921–930, 2000.
[21]  J. M. Poneros, “Diagnosis of Barrett's esophagus using optical coherence tomography,” Gastrointestinal Endoscopy Clinics of North America, vol. 14, no. 3, pp. 573–588, 2004.
[22]  J. A. Evans and N. S. Nishioka, “The use of optical coherence tomography in screening and surveillance of Barrett's esophagus,” Clinical Gastroenterology and Hepatology, vol. 3, no. 7, pp. S8–S11, 2005.
[23]  Y. Chen, A. D. Aguirre, P. L. Hsiung et al., “Ultrahigh resolution optical coherence tomography of Barrett's esophagus: preliminary descriptive clinical study correlating images with histology,” Endoscopy, vol. 39, no. 7, pp. 599–605, 2007.
[24]  D. C. Adler, C. Zhou, T. H. Tsai et al., “Three-dimensional optical coherence tomography of Barretts esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation,” Endoscopy, vol. 41, no. 9, pp. 773–776, 2009.
[25]  M. J. Suter, B. J. Vakoc, P. S. Yachimski et al., “Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging,” Gastrointestinal Endoscopy, vol. 68, no. 4, pp. 745–753, 2008.
[26]  D. C. Adler, C. Zhou, T. H. Tsai et al., “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Optics Express, vol. 17, no. 2, pp. 784–786, 2009.
[27]  C. Zhou, D. C. Adler, L. Becker et al., “Effective treatment of chronic radiation proctitis using radiofrequency ablation,” Therapeutic Advances in Gastroenterology, vol. 2, no. 3, pp. 149–156, 2009.
[28]  G. Isenberg, M. V. Sivak, A. Chak et al., “Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett's esophagus: a prospective, double-blinded study,” Gastrointestinal Endoscopy, vol. 62, no. 6, pp. 825–831, 2005.
[29]  C. Zhou, T. H. Tsai, and H. C. Lee, “Characterization of buried glands pre- and post-radiofrequency ablation using threedimensional optical coherence tomography,” Gastrointestinal Endoscopy, vol. 76, no. 1, pp. 32–40, 2012.
[30]  P. Sharma, J. Dent, D. Armstrong et al., “The development and validation of an endoscopic grading system for Barrett's esophagus: the prague C & M criteria,” Gastroenterology, vol. 131, no. 5, pp. 1392–1399, 2006.
[31]  D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nature Photonics, vol. 1, no. 12, pp. 709–716, 2007.
[32]  R. Ackroyd, N. J. Brown, T. J. Stephenson, C. J. Stoddard, and M. W. R. Reed, “Ablation treatment for Barrett oesophagus: what depth of tissue destruction is needed?” Journal of Clinical Pathology, vol. 52, no. 7, pp. 509–512, 1999.
[33]  H. Barr, N. Krasner, P. B. Boulos, P. Chatlani, and S. G. Bown, “Photodynamic therapy for colorectal cancer: a quantitative pilot study,” British Journal of Surgery, vol. 77, no. 1, pp. 93–96, 1990.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133