全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
红外技术  2015 

黄酒总酚含量检测:一种基于GA-LSSVM的近红外光谱波段选择方法

DOI: 10.11846/j.issn.1001_8891.201507014, PP. 613-617

Keywords: 近红外光谱,黄酒总酚,GA-LSSVM

Full-Text   Cite this paper   Add to My Lib

Abstract:

主要研究了近红外光谱技术对成品黄酒中总酚含量快速检测的可行性。针对近红外光谱样本少、非线性等特点,首次将最小二乘支持向量机(Leastsquaressupportvectormachines,LSSVM)方法引入到传统遗传算法(geneticalgorithms,GA)的波长选择中,提出一种基于GA-LSSVM的近红外光谱波段选择方法。该方法采用LSSVM建立小样本下不同波段的非线性模型,然后通过GA算法进行波长的优化选择。应用中,基于GA-LSSVM模型的总酚预测集相关系数(Rp)为0.9734,预测均方根误差(RMSEP)为5.5596,相比于传统方法,GA-LSSVM算法能够较好地提取非线性信息,预测效果更好。

References

[1]  ?袁珂. 从绿茶中提取茶多酚的工艺方法[J]. 林产化学与工业, 1997, 17(1):56-60. [2] ?黄常毅, 范海滨, 刘飞, 等. 近红外光谱法在红曲菌固态发酵过程参数检测中的应用[J]. 分析测试学报, 2014, 33(1):13-20. [3] ?Cozzolino D, Kwiatkowski M J, Parker M. Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy[J]. Analytica Chimica Acta, 2004, 513(1):73-80. [4] ?Chen H Z, Song Q Q, Tang G Q. Optimal scheduling of cyclic batch processes for heat integration-basic formulation[J]. Journal of Cereal Science, 2014, 60(3):595-601. [5] ?Fernandez-Novales J, Lopez M I, Gonzalez-Czballero V. Shortwave- near infrared spectrescopy for determination of reducing sugar content during grape ripening, winemaking, and aging of white and red wines[J]. Food Research International, 2009, 42(2): 285-291. [6] ?Xu L, Lu J G, Yang Q M. A new method of information interval selection near infrared spectral[J]. Chinese Journal Of Chemical Engineering, 1997, 17(1): 56-60. [7] ?Norgaard L, Saudland A, Wagner J, Interval partial least-squares regression (ipls): a comparative chemometric study with an example from near-infrared spectroscopy[J]. Applied Spectroscopy, 2000, 54(3): 413-419. [8] ?Wang X F, Bao Y F, Liu G L. Study on the best analysis spectral section of NIR to detect alcohol concentration based on sipls[J]. Procedia Engineering, 2012, 29: 2285-2290. [9] ?Durand A. Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures innear-infrared quantitative analysis of cotton–viscose textiles[J]. Analytica Chimica Acta, 2007, 595(1):72-79. [10] ?Zou H Y, Wu H L, Fu H Y. Variable-weighted least-squares support vector machine for multivariate spectral analysis[J]. Talanta, 2010, 80(5):1698-1071. [11] ?Alves J C, Poppi R J. Biodiesel content determination in diesel fuel blends using near infrared (NIR) spectroscopy and support vector machines (SVM)[J]. Talanta, 2013, 104:155-161. [12] ?刘雪梅, 柳建设. 基于LS-SVM建模方法近红外光谱检测土壤速效N和速效K的研究[J]. 光谱学与光谱分析, 2012, 11: 3019-3023. [13] ?Chauchard F, Cogdill R, Rcussel S. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes[J]. Chemometrics and intelligent laboratory systems, 2004, 72(2):141-150. [14] ?吴瑞梅, 王晓, 郭平, 等. 近红外光谱结合特征变量筛选方法用于农药乳油中毒死蜱含量的测定[J]. 分析测试学报, 2013, 32(11):1359-1363. [15] ?Slinkard K, Singleton V L. Total phenol analysis: automation and comparison with manual methods[J]. American Journal of Enology and Viticulture, 1997, 28(1):49-55.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133