非线性标量化函数,极大极小不等式,向量值映射, Open Access Library" />

全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

向量值映射的极大极小不等式

, PP. 42-48

Keywords: 非线性标量化函数&searchField=keyword">非线性标量化函数')"href="#">非线性标量化函数,极大极小不等式,向量值映射

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用一类非线性标量化函数和非凸分离定理,在较弱的条件下,证明了向量值函数的极大极小定理.并给出具体例子说明,所得结果推广了相应文献中的结论.

References

[1]  HA C W. Minimax and fixed point theorems[J]. Mathematische Annalen, 1980, 248: 73-77.
[2]  FAN K. Minimax theorems[J]. Proceedings of the National Academy of Sciences of the USA, 1953, 39: 42-47.
[3]  SION M. On general minimax theorems[J]. Pacific Journal of Mathematics, 1958, 8: 171-176.
[4]  NIEUWENHUIS J W. Some minimax theorems in vector-valued functions[J]. Journal of Optimization Theory and Application, 1983, 40: 463-475.
[5]  FERRO F. A minimax theorem for vector-valued functions[J]. Journal of Optimization Theory and Applications, 1989, 60: 19-31.
[6]  FERRO F. A Minimax Theorem for Vector-Valued Functions, Part 2[J]. Journal of Optimization Theory and Applications, 1991, 68: 35-48.
[7]  LI Z F, WANG S Y. A type of minimax inequality for vector for vector-valued mappings[J]. Journal of Mathematical Analysis and Applications, 1998, 227: 68-80.
[8]  LI S J, CHEN G Y, YANG X Q. Generalized minimax inequalities for set-valued mappings[J]. Journal of \linebreak Mathematical Analysis and Applications, 2003, 281: 707-723.
[9]  GONG X H. The strong minimax theorem and strong saddle points of vector-valued functions[J]. Nonlinear Analysis, 2008, 68: 2228-2241.
[10]  KIMURA K, TANAKA T. Existence theorem of cone saddle-points applying a nonlinear scalarization[J]. Taiwanese Journal of Mathematics, 2006, 10: 563-571.
[11]  AUBIN J P, EKELAND I. Applied Nonlinear Analysis[M]. John Wiley and Sons, New York, 1984.
[12]  JAHN J. Vector Optimization. Theory, Application, and Extensions[M]. Spring-Verlag, Berlin, 2004.
[13]  TANAKA T. Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions[J]. Journal of Optimization Theory and Applications, 1994, 81: 355-377.
[14]  GERSTEWITZ C. Nichtkonvexe trennungassatzc und deren anwendung in der theorie der vektoroptimierung[J]. Seminarberichte der Secktion Mathematik der Humboldt-Universitat zu Berlin, 1986, 80: 19-31.
[15]  CERTH C, WEIDNER P. Nonconvex separation theorems and some applications in vector optimization[J]. Journal of Optimization Theory and Applications, 1990, 67: 297-320.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133