全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂表面问题的有限元计算与分析

Keywords: 复杂接触表面,移动边界条件,多层结构耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

碰撞、弹塑变形问题等交通运输器的安全试验通常采用实验室实物模型与计算机模型相结合进行模拟.对三维复杂区域的接触,国际标准方法采用接触变形算法模拟滑动控制.本课题采用流固耦合非牛顿流体方程初边值问题求解三维层结构特性,通过基于变分原理的摄动问题有限元方法,在高性能软件平台上实现数据的挖掘处理.由Sobolev空间嵌入原理,可将模型按接触区域进行分层单元剖分,将复杂区域剖分为若干相互连接、不重叠的六面体与空间平面四边形单元.同时,建立微观与宏观有限元双尺度计算模型进行模拟仿真对比,得到模型的能量与速度等一系列参数的变化曲线.此外,接触表面问题又可采用渐近摄动方法中的边界层理论进行研究,由此得到的微分方程特征函数空间,既可作为优化有限元基函数的解,又可用于建立一种新型的非线性特征值的渐近方法,也是估计材料特定参数的方法之一.最后,使用人工边界条件随机处理方法对求解结果的数据进行分析.

References

[1]  LIN Q, LU T. Asymptotic Expansions for Finite Element Eigenvalues and Finite Element Solution[M]. [S.L.]: Bonn Math Schrift, 1984. 
[2]  林群,周俊明,陈竤焘.椭圆形方程四面体线元的超逼近与外推[J]. 数学实践与认识, 2009, 39(15): 200-208.
[3]  LIN Q, LIN J F. Finite Element Methods: Accuracy and Improvement[M]. Beijing: Science Press, 2006.
[4]  LIN Q, YAN N N. Construction and Analysis for Effective Finite Element Methods[M]. Hebei: Hebei University Press, 1996.
[5]  THOMAS J W. Numerical Partial Differential Equations[M]. New York: Springer-Verlag, 1995.
[6]  KELLER J B, GIVOLI D. Exact non-reflecting boundary conditions[J]. Comput Phys, 1989, 82: 172-192.
[7]  HAN H D. A new class of variational formulations for the coupling of finite and boundary element methods[J]. Comput Math, 1990, 8(3): 223-232.
[8]  HOU L. Failure modes analysis in the crash barrier simulation[C]// Proc 5th Euro LS-Dyna Conference. Birmingham: The ICC Birmingham, 2005. B-02.
[9]  FRANK P. The work of Richard von Mises[J]. Science, 1954, 119(3102): 823-824.
[10]  GIBSON L J, ASHBY M F. Cellular Solids, Structure and Properties[M]. Pergamon: Oxford, 1988.
[11]  ZHOU Q, WIERZBICKI T. An incremental analysis of plane strain fully plastic crack growth in strain- hardening materials under extension[J]. International Journal of Fracture, 1996, 79: 27-48.
[12]  CAO L Q, CUI J Z, ZHU D C. Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equations with rapidly oscillating coefficients over general convex domains[J]. SIAM J Numerical Analysis, 2002, 40(3): 543-577. 
[13]  ZHANG Hui, ZHANG Pingwen. Local existence for the FENE-dumbbell model of polymeric fluids[J]. Archive for Rational Mechanics and Analysis, 2006, 181(2): 373-400.
[14]  LIN Q, YAN N. Global superconvergence of mixed finite element methods for Maxwell’s equations[J]. Journal of Engineering Mathematics, 1996, 13: 1-10. 
[15]  林群,谢和虎,罗福生,等. Stokes方程非协调混合元的特征值下界[J]. 数学的实践与认识, 2010, 40(19):157-168.
[16]  PENG Shi Ge. Backward stochastic differential equations and application in optimal control[J]. Appl Math & Optima, 1993, 27: 125-144.
[17]  陈传淼.科学计算概论[M]. 北京: 科学出版社, 2007.
[18]  GATICA G N, HSIAO G C. On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem[J]. Numer Math, 1992, 61(2): 171-214.
[19]  XU J. Two-grid discretization techniques for linear and nonlinear PDEs[J]. SIAM J Numer Anal, 1996, 33(5): 1759-1777.〖HJ〗
[20]  MEDDAHI S, GONZALEZ M, PEREZ P. On a FEM-BEM formation for an exterior quasilinear problem in the plane[J]. SIAM J Numer Anal, 2000, 37(6): 1820-1837.
[21]  YU D H. Natural boundary integral method and its applications[M]. Beijing: Science Press/Kluwer Academic Publishers, 2002.
[22]  YING L A. Numerical Methods for Exterior Problems[M]. New Jersey: World Scientific, 2006.
[23]  HSIAO G C. Boundary element methods—an overview[J]. Appl Numer Math, 2006, 56(10-11): 1356-1369.
[24]  XU Z L, HAN H D, WU X N. Numerical method for the deterministic Kardar-Parisi-Zhang equation in unbounded domains[J]. Commum Comput Phys, 2006, 1(3): 481-495.
[25]  HOU L, QIU L. Computation and asymptotic analysis in the non-Newtonian impact problem[J]. ACTA Math Applic Sinica, 2009, 25(1): 117-126.
[26]  BURDEN R L, FAIRES J D. Numerical Analysis[M]. Beijing: Higher Education Press, 2001.
[27]  HOU L, PARIS R B, WOOD A D. Resistive interchange mode in the presence of equilibrium flow[J]. Physics of Plasmas, 1996, 3(2): 473-481.
[28]  HOU L, HARWOOD R. Nonlinear properties in the Newtonian and non-Newtonian equations[J]. Nonlinear analysis, 1997, 4(30): 2497-2505.
[29]  陆金甫. 偏微分方程数值解法[M]2版.北京:清华大学出版社, 2003.
[30]  王元明. 索伯列夫空间讲义[M]. 南京: 东南大学出版社, 2008.
[31]  林群. 微分方程数值解法[M]. 北京: 科学出版社, 2003.
[32]  黄世霖, 张金换, 王晓东, 等. 汽车碰撞与安全[M]. 北京: 清华大学出版社, 2000. [37]MARCHAL J M, CROCHET M J. A new mixed finite element for calculating viscoelastic flow[J]. J NonNewt Fluid Mech, 1987, 26: 77-114. [38] HOU L, LI H L, ZHANG J, et al. Boundarylayer eigen solutions for multi-field coupled equations in the contact interface[J]. Appl Math Mech, 2010, 31(6):719-732. [39]SUGENG F, PHANTHIEN N, TANNER R I. A study of non-isothermal non-newtonian extrudate swell by a mixed boundary element and finite element method[J]. J Rheology, 1987, 31(1): 37-58.
[33]  FISHER R A. Theory of statistical estimation[C]// Proceedings of the Cambridge Phil Society, 1925, 22: 709-715. [41]HOU L, LI H L, LIN D Z, et al. The stochastic boundary-layer in the non-Newtonian problem[C]// Proc WCE London, U K.: 2010, 3: 1401-1407. [42] HOU L, NASSEHI V. Evaluation of the stress effects flow in rubber mixing[J]. Nonlinear Analysis, 2001, 47(3): 1809-1820. [43]HOU L, DING H Y. High performance computing and mathematical study for the viscoelastic impact problem[C]// Proc of HAPC. Shanghai: LNCSSpringer, 2010: 169-176.[44] WEAIRE D L, HOU Lei. A statistic note on the mature 2D soap froth[J]. J Phil Mag Letters, 1990, 62: 427-430.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133