CHO S W, LIM S H, KIM I K, et al. Small-diameter blood vessels engineered with bone marrow-derived cells[J]. Ann Surg, 2005, 241: 506-515.
[2]
ISENBERG B C, WILLIAMS C, TRANQUILLO R T. Small-diameter artificial arteries engineered in vitro[J]. Circ Res, 2006, 98: 25-35.
[3]
JACKSON D W, GROOD E S, COHN B T, et al. The effects of in situ freezing on the anterior cruciate ligament. an experimental study in goats[J]. J Bone Joint Surg Am, 1991, 73: 201-213.
[4]
JACKSON D W, GROOD E S, WILCOX P, et al. The effects of processing techniques on the mechanical properties of bone-anterior cruciate ligament-bone allografts. An experimental study in goats[J]. Am J Sports Med, 1988, 16: 101-105.
[5]
BADER A, SCHILLING T, TEEBKEN O E, et al. Tissue engineering of heart valves human endothelial cell seeding of detergent acellularized porcine valves[J]. Eur J Cardiothoracic Surg, 1998, 14: 279-284.
[6]
HU G, XING B, OU L, et al. Decellularization of arteries and evaluation of extracellular matrix as scaffolds [J]. Chin J Biomed Eng, 2008, 27: 912-921.
[7]
SHAO J, WU L, WU J, et al. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress [J]. Lab Chip, 2009, 9(21): 3118-3125.
[8]
SHAO J, WU L, WU J, et al. A microfluidic chip for permeability assays of endothelial monolayer [J]. Biomed Microdevices, 2010, 12(1): 81-88.
[9]
ROBERT L, HORNEBECK W. Elastin and Elastases[M]. Florida: CRC Press, Inc., 1989: 11-18. [35] JOSSET Y, NASRALLAH F, JALLOT E, et al. Influence of physicochemical reactions of bioactive glass on the behavior and activity of human osteoblasts in vitro[J]. J Biomed Mater Res, 2003, 67: 1205-1218.
[10]
ZHAO L, CHANG J, ZHAI W. Effect of crystallographic phases of TiO2 on hepatocyte attachment, proliferation and morphology[J]. J Biomater Appl, 2005, 19: 237-252.
[11]
DAHL S L, KOH J, PRABHAKAR V, et al. Decellularized native and engineered arterial scaffolds for trans-plantation[J]. Cell Transplant, 2003(12): 659-666.
[12]
SCHMIDT C E, BAIER J M. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering[J]. Biomaterials, 2000, 21: 2215-2231.
[13]
OTT H C, MATTHIESEN T S, GOH S K, et al. Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart[J]. Nat Med, 2008, 14: 213-221.
[14]
GUSIC R J, PETKO M, MYUNG R, et al. Mechanical properties of native and ex vivo remodeled porcine saphenous veins[J]. J Biomech, 2005, 38: 1770-1779.
[15]
SCHANER P K, MARTIN N D, TULENKO T N, et al. Decellularized veins as a potential scaffold for vascular tissue engineering[J]. J Vasc Surg, 2004, 40: 146-152.
[16]
CONKLIN B S, RICHTER E R, KREUTZIGER K L, et al. Development and evaluation of a novel decellularized vascular xenograft[J]. Med Eng Phys, 2002, 24: 173-183.
[17]
WILLIAMS C, LIAO J, JOYCE E M, et al. Altered structural and mechanical properties in decellularized rabbit carotid arteries[J]. Acta Biomaterialia, 2009(5): 993-1005.
[18]
SHUM-TIM D, STOCK U, HRKACH J, et al. Tissue engineering of autologous aorta using a new biodegradable polymer[J]. Ann Thorac Surg, 1999, 68: 2298-2304.
[19]
LIU G F, HE Z J, YANG D P, et al. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft[J]. Chin Med J, 2008, 121: 1398-1406.
[20]
ZENG W, YUAN W, LI L, et al. The promotion of endothelial progenitor cells recruitment by nerve growth factors in tissue-engineered blood vessels[J]. Biomaterials, 2010, 31: 1636-1645.
[21]
ZHAO Y, ZHANG S, ZHOU J, et al. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells[J]. Biomaterials, 2010, 31: 296-307.
[22]
LEVY R J, SCHOEN F J, ANDERSON H C, et al. Cardiovascular implant calcification: A survey and update[J]. Biomaterials, 1991(12): 707-714.
[23]
GIBERT T W, SELLARO T L, BADYLAK S F. Decellularization of tissues and organs[J]. Biomaterials, 2006, 27: 3675-3683.
[24]
ALLAIRE E, GUETTIER C, BRUNEVAL P, et al. Cell-free arterial grafts: Morphologic characteristics of aortic isografts, allografts and xenografts in rats[J]. J Vasc Surg, 1994, 19: 446-456.
[25]
VOET D, VOET J G, PRATT C W. Fundamentals of Biochemistry[M]. New York: Wiley, 2002.
[26]
LU X, ZHAI W, ZHOU Y, et al. Crosslinking effect of nordihydroguaiaretic acid (NDGA) on decellularized heart valve scaffold for tissue engineering[J]. J Mater Sci Mater Med, 2010, 21: 473-480.
[27]
SEDDON A M, CUMOW P, BOOTH P J. Membrane Proteins, Lipids and detergents: Not just a soap opera[J]. Biochim Biophys Acta, 2004, 1666: 105-117.
[28]
DAHL S L, KOH J, PRABHAKAR V, et al. Decellularized native and engineered arterial scaffolds for trans-plantation[J]. Cell Transplant, 2003(12): 659-666.
[29]
RIEDER E, KASIMIR M T, SILBERHUMER G, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cell[J]. J Thorac Cardiovasc Surg, 2004, 127: 399-405.
[30]
BADER A, STEINHOFF G, STROBL K, et al. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix[J]. Transplantation, 2000, 70: 7-14.
[31]
CRAPO P M, GILBERT T W, BADYLAK S F. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32: 3233-3243.
[32]
JACKSON DW, GROOD E S, AMOCZKY S P, et al. Cruciate reconstruction using freeze dried anterior cruciate ligament allograft and a ligament augmentation device (LAD). An experimental study in a goat model[J]. Am J Sports Med, 1987, 15: 528-538.
[33]
JACKSON D W, GROOD E S, AMOCZKY S P, et al. Freeze dried anterior cruciate ligament allografts. preliminary studies in a goat model[J]. Am J Sports Med, 1987, 15: 295-303.
[34]
JACKSON D W, WINDLER G E, SIMON T M. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament[J]. Am J Sports Med, 1990, 18: 1-10.
[35]
ROBERTS T S, DREZ D, MCARTHY W, et al. Anterior cruciate ligament reconstruction using freeze-dried, ethylene oxide-sterilized, bone-patellar tendon-bone allografts. Two year results In thirty-six patients[J]. Am J Sports Med, 1991, 19: 35-41.
[36]
GULATI A K. Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve[J]. J Neurosurg, 1988, 68: 117-123.
[37]
ZHOU J, FRITZE O, SCHLEICHER M, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity[J]. Biomaterials, 2010, 31: 2549-2554.
[38]
FUNAMOTO S, NAM K, KIMURA T, et al. The use of high-hydrostatic pressure treatment to decellularize blood vessels[J]. Biomaterials, 2010, 31: 3590-3595.
[39]
PENTERSEN T H, CALLE E A, ZHAO L, et al. Tissue-engineered lungs for in vivo implantation[J]. Science, 2010, 329: 538-541.