算子的亚循环性与拓扑一致降标
Keywords: 亚循环算子,拓扑一致降标,算子的单值延拓性质
Abstract:
利用算子的拓扑一致降标,给出了算子~$A\in\overline{HC(H)}$~的判定方法,其中~$\overline{HC(H)}$~表示无限维可分的复~Hilbert~空间~$H$~上所有亚循环算子集合的范数闭包.
References
[1] | Math Soc Japan, 1982, 34(2): 317-337.
|
[2] | {2}
|
[3] | AIENA P. Fredholm and Local Spectral Theory, with Applications to
|
[4] | Multipliers[M]. Dordrecht: Kluwer Academic Publishers, 2004.
|
[5] | {3}
|
[6] | LAURSEN K B, NEUMANN M M. An Introduction to Local Spectral
|
[7] | Theorey[M]. London Math Soc Monogr New Ser 20. New York: Clarendon
|
[8] | Press, 2000.
|
[9] | {4}
|
[10] | FINCH J K. The single valued extension property on a Banach
|
[11] | space[J]. Pacific J Math, 1975, 58(1): 61-69.
|
[12] | Journal of Functional Analysis, 1991, 99: 179-190.
|
[13] | ZHU S, LI CH G. SVEP and compact perturbation[J]. Journal of
|
[14] | {1}
|
[15] | GRABINER S. Uniform ascent and descent of bounded operators[J]. J
|
[16] | {5}
|
[17] | HERRERO D A. Limits of hypercyclic and supercyclic operators[J].
|
[18] | {6}
|
[19] | Mathematical Analysis and Applications, 2011, 380: 69-75.
|
[20] | {7}
|
[21] | JIANG Q F, ZHONG H J, ZENG Q P. Topological uniform descent and
|
[22] | localized SVEP[J]. Journal of Mathematical Analysis and
|
[23] | Applications, 2012, 390: 355-361.
|
Full-Text