PARK S, CHUNG T D, KIM H C. Nonenzymatic glucose detection using mesoporous platinum [J]. Anal Chem, 2003, 75: 3046-3049.
[2]
SU S, HE Y, SONG S P, et al. A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity [J]. Nanoscale, 2010(2): 1704-1707.
[3]
QIU C C, WANG X, LIU X Y, et al. Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor [J]. Electrochimica Acta, 2012, 67: 140-146.
[4]
YANG M, YANG Y, LIU Y, et al. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors [J]. Biosens Bioelectron, 2006, 21: 1125-1131.
[5]
ABDOLLAH S, ENSIYEH S, ABDOLLAH N, et al. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity [J]. Biosensors and Bioelectronics, 2007, 22: 3146-3153.
[6]
CHEN X M, LIN Z J, CHEN D J, et al. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes [J]. Biosens Bioelectron, 2010, 25: 1803-1808.
[7]
HINDLE P H, NIGRO S, ASMUSSEN M, et al. Amperometric glucose sensor based on platinum-iridium nanomaterials [J]. Electrochemistry Communications, 2008, 10: 1438-1441.
[8]
CHEN L Y, LANG X Y, FUJITA T, et al. Nanoporous gold for enzyme-free electrochemical glucose sensors [J]. Scripta Materialia, 2011, 65: 17-20.
[9]
CUI H F, YE J S, ZHANG W D, et al. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites [J]. Anal Chim Acta, 2007, 594: 175-183.
[10]
SHI J, CI P L, WANG F, et al. Nonenzymatic glucose sensor based on over-oxidized polypyrrole modified Pd/Si microchannel plate electrode [J]. Biosensors and Bioelectronics, 2011, 26: 2579-2584.
[11]
MIAO F J, TAO B R, SUN L, et al. Amperometric glucose sensor based on 3D ordered nickel-palladium nanomaterial supported by silicon MCP array [J]. Sens Actuators B, 2009, 141: 338-342.
[12]
LU L M, ZHANG L, QU F L, et al. A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy [J]. Biosens Bioelectron, 2009, 25: 218-223.
[13]
ZHANG Y C, SU L, MANUZZI D, et al. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires [J]. Biosensors and Bioelectronics, 2012,31: 426-432.
[14]
WAN L J, GONG W L, JIANG K W, et al. Preparation and surface modification of silicon nanowires under normal conditions [J]. Appl Surf Sci, 2008, 254: 4899-4907.
[15]
TAO B R, ZHANG J, HUI S C, et al. An amperometric ethanol sensor based on a Pd-Ni/SiNWs electrode [J]. Sens Actuators B, 2009, 142: 298-303.
[16]
HUI S C, ZHANG J, CHEN X J, et al. Study of an amperometric glucose sensor based on Pd-Ni/SiNW electrode [J]. Sensors and Actuators B, 2011, 155: 592-597.
[17]
LIANG Z X, ZHAO T S, XU J B, et al. Mechanism study of the ethanol oxidation reaction on palladium [J]. Electrochimica Acta, 2009, 54: 2203-2208.
[18]
MENG L, JIN J, YANG G X, et al. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures [J]. Anal Chem, 2009, 81: 7271-7280.
[19]
SATHEESH BABU T G, RAMACHANDRAN T. Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model [J]. Electrochim Acta, 2010, 55: 1612-1618.