全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

下一代移动推荐系统

, PP. 37-45

Keywords: 推荐系统,计算广告,移动序列推荐

Full-Text   Cite this paper   Add to My Lib

Abstract:

推荐系统的目的是通过利用用户的评价信息,实现从过载的信息中识别出用户感兴趣的内容.移动环境下的空间数据复杂性较高,并且用户的上下文信息更加模糊,从而使得移动个性化推荐相比于传统领域面临更大的挑战.本文通过介绍传统推荐算法和移动环境下个性化推荐的特性,给出了移动推荐的挑战;在基于GPS信息的出租车线路推荐和旅游包推荐两个移动案例基础上,提出了移动序列推荐问题及基于约束的旅游推荐问题,并给出了相应的解决方案.

References

[1]  GE Y, XIONG H, TUZHILIN A, et al. Anenergy-efficient mobile recommender system[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. Washington DC: ACM, 2010: 899-908.
[2]  HOSSEINI-POZVEH M, NEMATBAKHSH M, MOVAHHEDINIA N. A Multidimensional Approach for Context-aware Recommendation in Mobile Commerce [J]. International Journal of Computer Science and Information Security, 2009, 3(1): 86-91.
[3]  YANG W S, CHENG H C, DIA J B. A location-aware recommender system for mobile shopping environments[J]. Expert Systems with Applications, 2008, 34(1): 437-445.
[4]  GEDIMINAS A, ALEXANDER T. Towards the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[5]  许海玲, 吴潇, 李晓东,等. 互联网推荐系统比较研究[J]. 软件学报, 2009, 20(2): 350-362.
[6]  徐风苓, 王立才, 孟祥武. 基于移动用户上下文相似度的协同过滤推荐算法[J]. 电子与信息学报, 2011, 33(11): 2785-2789.
[7]  RESNICK P, VARIAN H R. Recommender systems [J]. Communications of the ACM, 1997,40(3): 56-58.
[8]  MOONEY R J, ROY L. Content-based book recommending using learning for text categorization[C]//Proceedings of the SIGIR-99 Workshop on Recommender Systems:Algorithms and Evaluation. Berkeley,CA: ACM, 1999.
[9]  MANNING C, RAGHAVAN P, SCHTZE H. An Introduction to Information Retrieval[M]. Cambridge: Cambridge University Press, 2009.
[10]  PAZZANI M, BILLSUS D. Learning and revising user profiles: The identification of interesting web sites[J]. Machine learning, 1997, 331: 313-331.
[11]  PAZZANI M. A framework for collaborative, content-based and demographic filtering[J]. Artificial Intelligence Review, 1999: 1-16.
[12]  SOMLO G L, HOWE A E. Adaptive lightweight text filtering[C]//Proceedings of the 4th International Symposium on Intelligent Data Analysis. Lisbon, Portugal: Springer, 2001.
[13]  ZHANG Y, CALLAN J, MINKA T. Novelty and redundancy detection in adaptive filtering[C]//Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval. New York, USA: ACM Press, 2002: 81-88.
[14]  ROBERTSON S. Threshold setting and performance optimization in adaptive filtering[J]. Information Retrieval, 2002, 5: 239-256.
[15]  ZHANG Y, CALLAN J. Maximum likelihood estimation for filtering thresholds[C]//Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. New Orleans, LA, USA: ACM Press, 2001: 294-302.
[16]  GOLDBERG D, NICHOLS D, OKI B, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 61(10): 1-10.
[17]  BURKE R. Hybrid recommender systems: Survey and experiments [J]. User Modeling and User-adapted Interaction, 2002, 12(4): 331-370.
[18]  王立才, 孟祥武, 张玉洁. 上下文感知推荐系统[J]. 软件学报, 2012, 23(1): 1-20.
[19]  SOBOROFF I, NICHOLAS C. Combining content and collaboration in text filtering[C]//Proceedings of the IJCAI’99 Workshop:Machine Learning for Information Filtering, 1999.
[20]  GE Y, LIU Q, XIONG H, et al. Cost-aware Travel Tour Recommendation[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. San Diego, California, USA: ACM Press, 2011: 983.
[21]  CENA F, CONSOLE L, GENA C, et al. Integrating heterogeneous adaptation techniques to build a flexible and usable mobile tourist guide[J]. AI Communications, 2006, 19(4): 369-384.
[22]  HEIJDEN H van der, KOTSIS G, KRONSTEINER R. Mobile recommendation systems for decision making’on the go''[C]//International Conference on Mobile Business. 2005: 137-143.
[23]  TVEIT A. Peer-to-peer based recommendations for mobile commerce [C]//Proceedings of the 1st International Workshop on Mobile Commerce. Rome, Italy: ACM Press, 2001: 26-29.
[24]  MILLER B, ALBERT I, LAM S. Movielens unplugged: Experiences with a recommender system on four mobile devices[C]//Eighth International Conference on Intelligent User Interfaces. Miami, FL, USA:ACM Press, 2003:263-266.
[25]  CHEVERST K, DAVIES N, MITCHELL K. Developing a context-aware electronic tourist guide: some issues and experiences[C]//Proceedings of the SIGCHI conference on Human factors in computing systems. The Hague, Netherlands: ACM Press, 2000: 17-24.
[26]  AVERJANOVA O, RICCI F, NGUYEN Q N. Map-Based Interaction with a Conversational Mobile Recommender System[C]//The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies. IEEE, 2008: 212-218.
[27]  GABRILOVICH E, JOSIFOVSKI, VANJA, et al. Introduction to Computational Advertising[C]//Tutorials’08 Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies. Stroudsburg, PA, USA: 2008: 1-1.
[28]  LI K, DU T C. Building a targeted mobile advertising system for location-based services [J]. Decision Support Systems, Elsevier, 2012.
[29]  KIM B, HA J, LEE S, et al. AdNext: A Visit-Pattern-Aware Mobile Advertising System for Urban Commercial Complexes[C]//12th Workshop on Mobile Computing Systems and Applications-HotMobile 2011. Phoenix, Arizona: [s.n.] 2011.
[30]  TSANG M, HO S-C, LIANG T-P. Consumer attitudes toward mobile advertising: An empirical study[J]. International Journal of Electronic Commerce, 2004, 8(3): 65-78.
[31]  GE Y, LIU C. A taxi business intelligence system[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. San Diego, California, USA: ACM, 2011: 735-738.
[32]  LIU Q, GE Y, LI Z, et al. Personalized Travel Package Recommendation[C]//2011 IEEE 11th International Conference on Data Mining. Vancouver, Canada: IEEE, 2011: 407-416.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133