AGICHTEIN E, BRILL E, DUMAIS S. Improving web search ranking by incorporating user behavior information[C]//Proc 29th SIGIR, 2006:19-26.
[3]
JOACHIMS T. Optimizing search engines using clickthrough data[C]//Proc KDD, 2002.
[4]
JOACHIMS T, GRANKA L, PAN B, et al. Accurately interpreting clickthrough data as implicit feedback[C]//Proc SIGIR, 2005.
[5]
GRANKA L A, JOACHIMS T, GAY G. Eye-tracking analysis of user behavior in www search[C]//Proc SIGIR’04, 2004.
[6]
ZHANG V, JONES R. Comparing click logs and editorial labels for training query rewriting[C]//Query Log Analysis: Social And Technological Challenges. Banff: WWW’07, 2007.
[7]
RICHARDSON M, DOMINOWSKA E, RAGNO R. Predicting Clicks: Estimating the Click-Through Rate for New Ads[C]//Banff: WWW’07, 2007.
[8]
DUPRET G E, PIWOWARSKI B. A user browsing model to predict search engine click data from past observations.[C]//SIGIR’08, 2008.
[9]
CHAPELLE O, ZHANG Y. A dynamic Bayesian network click model for web search ranking[C]//WWW’09, 2009.
[10]
GUO F, LIU C, KANNAN A, et al. Click chain model in web search[C]//WWW’09, 2009.
[11]
LIU C, GUO F, FALOUTSOS C. Bbm: Bayesian browsing model from petabyte-scale data[C]//KDD’09, 2009.
[12]
ZHU Z A, CHEN W, MINKA T, et al. A novel click model and its applications to online advertising[C]//WSDM’10, 2010.
[13]
DUPRET G, LIAO C. A model to estimate intrinsic document relevance from the clickthrough logs of a web search engine[C]//WSDM’10, 2010.
[14]
BECKER H, MEEK C, CHICKERING D M. Modeling contextual factors of click rates[C]//AAAI’07, 2007.
[15]
CHEN W Z, JI Z L, SHEN S, et al. A Whole Page Click Model to Better Interpret Search Engine Click Data[C]//AAAI’11, 2011.
[16]
CHAKRABARTI D, AGARWAL D, JOSIFOVSKI V. Contextual Advertising by Combining Relevance with Click Feedback[C]//WWW’08, 2008.
[17]
GRAEPEL T, CANDELA J Q, BORCHERT T, et al. Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine[C]//ICML’10, 2010.
[18]
M Regelson, D C. Fain. Predicting Click Through Rate Using Keyword Clusters[C]//EC’06, 2006.
[19]
DEMBCZYNSKI K, KOTOWSKI W, WEISS D. Predicting Ads’ ClickThrough Rate with Decision Rules[C]//WWW’08, 2008.
[20]
AGARWAL D, BRODER A Z, CHAKRABARTI D, et al. Estimating rates of rare events at multiple resolutions[C]//KDD’07, 2007.
[21]
AGARWAL D, AGRAWAL R, KHANNA R, et al. Estimating rates of rare events with multiple hierarchies through scalable log-linear models[C]//KDD’10, 2010.
[22]
AGARWAL D, CHEN B C, ELANGO P. Spatio-Temporal Models for Estimating Click through Rate[C]//WWW’09, 2009.
[23]
YAN J, LIU N, WANG G, et al. How much can Behavioral Targeting Help Online Advertising?[C]//WWW’09, 2009.
[24]
AGARWAL D, CHEN B-C, ELANGO P, et al. Click shaping to optimize multiple objectives[C]//KDD’11, 2011.
[25]
SHEN S, HU B, CHEN W Z, et al. Personalized click model through collaborative filtering[C]//WSDM’12, 2012.
[26]
CHEN W Z, WANG D, ZHANG Y C, et al. A noise-aware click model for web search[C]//WSDM’12, 2012.
[27]
HU B, ZHANG Y C, CHEN W Z, et al. Characterizing search intent diversity into click models[C]//WWW’11, 2011.
[28]
ASHKAN A, CLARKE C L A, AGICHTEIN E, et al. Estimating Ad Clickthrough Rate through Query Intent Analysis[C]//WI-IAT’09, 2009.
[29]
XIONG C, WANG T, DING W, et al. Relation Click prediction for sponsored search[C]//WSDM’12, 2012.
[30]
IMMORLICA N, JAIN K, MAHDIAN M, et al. Click Fraud Resistant Methods for Learning[C]//WINE’05, 2005.
[31]
GOLLAPUDI S, PANIGRAHY R, GOLDSZMIDT M. Inferring Clickthrough Rates on Ads from Click Behavior on Search Results[C]//WSDM’11, 2011.