全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

某类\,Finsler-Einstein\,空间之间的共形映射

, PP. 160-166

Keywords: Einstein空间,共形映射,Randers度量,Kropina度量

Full-Text   Cite this paper   Add to My Lib

Abstract:

Liouville\,定理证明了欧氏空间到自身的共形变换是莫比乌斯变换.关于\,Riemann\,空间,Brinkmann\,首先得到了一般的结论.但对\,Finsler\,空间的研究乏人问津.本文运用导航术和共形映射的性质证明了\,Randers\,空间(或\,Kropina\,空间)之间保Einstein度量的共形变换必是相似变换.

References

[1]  {1}
[2]  BRINKMANN H W. Einstein spaces which are mapped conformally on each
[3]  other[J]. Mathematische Annalen, 1925, 94(5): 119-145.
[4]  {2}
[5]  EINSENHART L P. Riemannian Geometry[M]. Princeton: Princenton Univ
[6]  Press, 1926.
[7]  {3}
[8]  FEDISHCHENKO S I. Special conformal mappings of Riemannian spaces.
[9]  Ukrain Geom Sb. 1982, 25: 130-137, 144 (Russian).
[10]  {4}
[11]  PENROSE R, HERMANN WEYL. space-time and conformal
[12]  geometry[C]//Hermann Weg (1885-1985). Zrich: Eidgenssische Tech
[13]  Hochschule, 1986: 25-52.
[14]  {5}
[15]  K\"{U}HNEL W. Conformal transformations between Einstein
[16]  spaces[C]//Conformal Geometry Aspects Math E 12, F. Braunschweig:
[17]  Vieweg Sohn, 1988: 105-146.
[18]  {6}
[19]  K\"{U}HNEL W, RADEMACHER H B. Conformal diffeomorphisms preserving
[20]  the Ricci tensor[J]. Proc Amer Math Soc, 1995, 123(9): 2841-2848.
[21]  {7}
[22]  K\"{U}HNEL W, RADEMACHER H B. Conformal transformations of
[23]  pseudo-Riemannian manifolds[C]//Recent Developments in
[24]  Pseudo-Riemannian Geometry. ESI Lect in Math and Phys, Z\"{u}rich:
[25]  EMS. 2008: 261-298.
[26]  {8}
[27]  MIKES J, GAVRILLCHENKO M L, GLADYSHEVA, E. I. Conformal mappings
[28]  onto Einstein spaces[J]. Mosc Univ Math Bull, 1994, 49(3): 10-14.
[29]  {9}
[30]  AMINOVA A V. Projective transformations of pseudo-Riemannian
[31]  manifolds[J]. J Math Sci, 2003, 113(3): 367-470.
[32]  {10}
[33]  KISOSAK V A, MATVEEV V S. There are no conformal Einstein rescalings
[34]  of complete pseudo-Riemannian Einstein metrics[J]. C R Math Acad
[35]  Sci, 2009, 347(17-18): 1067-1069.
[36]  {11}
[37]  BAO D W, ROBLES C. On Ricci curvature and flag curvature in Finsler
[38]  geometry[C]//A Sampler of Finsler Geometry: MSRI Series {\bf 50}.
[39]  Cambriclge: Camb Univ Press, 2004: 197-259.
[40]  {12}
[41]  CHENG X Y, SHEN Z M, TIAN Y F. A Class of Einstein
[42]  alpha,\beta)$-metrics[J]. Israel Journal of Mathematics, 2012,
[43]  2: 1-29.
[44]  {13}
[45]  ZHANG X L, SHEN Y B. On Einstein Kropina metrics[J]. Differential
[46]  Geometry and Its Applications, 2013(31): 80-92.
[47]  {14}
[48]  BAO D W, CHEN X S, SHEN Z M. An Introduction to Riemann-Finsler
[49]  Geometry[M]. Springer, 2000.
[50]  {15}
[51]  BAO D W, ROBLES C, SHEN Z M. Zermelo navigation on Riemannian
[52]  manifolds[J]. Differential Geometry, 2004, 66: 377-435.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133