OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
某类\,Finsler-Einstein\,空间之间的共形映射
, PP. 160-166
Keywords: Einstein空间,共形映射,Randers度量,Kropina度量
Abstract:
Liouville\,定理证明了欧氏空间到自身的共形变换是莫比乌斯变换.关于\,Riemann\,空间,Brinkmann\,首先得到了一般的结论.但对\,Finsler\,空间的研究乏人问津.本文运用导航术和共形映射的性质证明了\,Randers\,空间(或\,Kropina\,空间)之间保Einstein度量的共形变换必是相似变换.
References
[1] | {1}
|
[2] | BRINKMANN H W. Einstein spaces which are mapped conformally on each
|
[3] | other[J]. Mathematische Annalen, 1925, 94(5): 119-145.
|
[4] | {2}
|
[5] | EINSENHART L P. Riemannian Geometry[M]. Princeton: Princenton Univ
|
[6] | Press, 1926.
|
[7] | {3}
|
[8] | FEDISHCHENKO S I. Special conformal mappings of Riemannian spaces.
|
[9] | Ukrain Geom Sb. 1982, 25: 130-137, 144 (Russian).
|
[10] | {4}
|
[11] | PENROSE R, HERMANN WEYL. space-time and conformal
|
[12] | geometry[C]//Hermann Weg (1885-1985). Zrich: Eidgenssische Tech
|
[13] | Hochschule, 1986: 25-52.
|
[14] | {5}
|
[15] | K\"{U}HNEL W. Conformal transformations between Einstein
|
[16] | spaces[C]//Conformal Geometry Aspects Math E 12, F. Braunschweig:
|
[17] | Vieweg Sohn, 1988: 105-146.
|
[18] | {6}
|
[19] | K\"{U}HNEL W, RADEMACHER H B. Conformal diffeomorphisms preserving
|
[20] | the Ricci tensor[J]. Proc Amer Math Soc, 1995, 123(9): 2841-2848.
|
[21] | {7}
|
[22] | K\"{U}HNEL W, RADEMACHER H B. Conformal transformations of
|
[23] | pseudo-Riemannian manifolds[C]//Recent Developments in
|
[24] | Pseudo-Riemannian Geometry. ESI Lect in Math and Phys, Z\"{u}rich:
|
[25] | EMS. 2008: 261-298.
|
[26] | {8}
|
[27] | MIKES J, GAVRILLCHENKO M L, GLADYSHEVA, E. I. Conformal mappings
|
[28] | onto Einstein spaces[J]. Mosc Univ Math Bull, 1994, 49(3): 10-14.
|
[29] | {9}
|
[30] | AMINOVA A V. Projective transformations of pseudo-Riemannian
|
[31] | manifolds[J]. J Math Sci, 2003, 113(3): 367-470.
|
[32] | {10}
|
[33] | KISOSAK V A, MATVEEV V S. There are no conformal Einstein rescalings
|
[34] | of complete pseudo-Riemannian Einstein metrics[J]. C R Math Acad
|
[35] | Sci, 2009, 347(17-18): 1067-1069.
|
[36] | {11}
|
[37] | BAO D W, ROBLES C. On Ricci curvature and flag curvature in Finsler
|
[38] | geometry[C]//A Sampler of Finsler Geometry: MSRI Series {\bf 50}.
|
[39] | Cambriclge: Camb Univ Press, 2004: 197-259.
|
[40] | {12}
|
[41] | CHENG X Y, SHEN Z M, TIAN Y F. A Class of Einstein
|
[42] | alpha,\beta)$-metrics[J]. Israel Journal of Mathematics, 2012,
|
[43] | 2: 1-29.
|
[44] | {13}
|
[45] | ZHANG X L, SHEN Y B. On Einstein Kropina metrics[J]. Differential
|
[46] | Geometry and Its Applications, 2013(31): 80-92.
|
[47] | {14}
|
[48] | BAO D W, CHEN X S, SHEN Z M. An Introduction to Riemann-Finsler
|
[49] | Geometry[M]. Springer, 2000.
|
[50] | {15}
|
[51] | BAO D W, ROBLES C, SHEN Z M. Zermelo navigation on Riemannian
|
[52] | manifolds[J]. Differential Geometry, 2004, 66: 377-435.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|