全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无限时间终端\,BSDE\,生成元的一个表示定理

, PP. 136-145

Keywords: 倒向随机微分方程,非一致\,Lipschitz\,条件,表示定理,逆比较定理

Full-Text   Cite this paper   Add to My Lib

Abstract:

在生成元\,$g$\,关于\,$(y,z)$\,满足对\,$t$\,非一致的\,Lipschitz\,条件下,建立了有限或无限时间终端倒向随机微分方程\,(简称为\,BSDE\,)\,生成元的一个表示定理,并且得到了此条件下\,BSDE\,解的一个逆比较定理,推广了一些已有结果.

References

[1]  {1}
[2]  BRIAND P, COQUET F, HU Y, et al. A converse comparison theorem for
[3]  BSDEs and related properties of g-expectation[J]. Electronic
[4]  Communications in Probability, 2000, 5: 101-117.
[5]  {2}
[6]  JIANG L. Convexity, translation invariance and subadditivity for
[7]  g-expectations and related risk measures[J]. Annals of Applied
[8]  Probability, 2008, 18(1): 245-258.
[9]  {3}
[10]  FAN S J, JIANG L. A representation theorem for generators of BSDEs
[11]  with continuous linear-growth generators in the space of
[12]  processes[J]. Journal of Computational and Applied Mathematics,
[13]  10, 235: 686-695.
[14]  {4}
[15]  FAN S J, JIANG L, XU Y. Representation theorem for generators of
[16]  BSDEs with monotonic and polynomial-growth generators in the space
[17]  of processes[J]. Electronic Journal of Probability, 2011, 16(27):
[18]  0-834.
[19]  {5}
[20]  CHEN Z J, WANG B. Infinite time interval BSDEs and the convergence
[21]  of g-martingales[J]. Journal of the Australian Mathematical Society.
[22]  Series A, 2000, 69: 187-211.
[23]  {6}
[24]  HEWITT E, STROMBERG K R. Real and Abstract Analysis[M]. New York:
[25]  Springer-Verlag, 1978.
[26]  {7}
[27]  汪嘉冈. 现代概率论基础~[M]. 2版. 上海: 复旦大学出版社, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133