[1] | {1}
|
[2] | Wiley, 1984.
|
[3] | {11}
|
[4] | FERRO F. A minimax theorem for vector-valued functions[J]. Journal
|
[5] | of Optimization Theory and Applications, 1989, 60: 19-31.
|
[6] | ANH L Q, KHANH P Q. Semicontinuity of the solution set of parametric
|
[7] | multivalued vector quasiequalibrium problems[J]. Journal of
|
[8] | Mathematical Analysis and Applications, 2004, 294: 699-711.
|
[9] | {2}
|
[10] | CHEN C R, LI S J. On the solution continuity of parametric
|
[11] | generalized systems[J]. Pacific Journal of Optimization, 2010, 6:
|
[12] | 1-151.
|
[13] | {3}
|
[14] | CHEN C R, LI S J, TEO K L. Solution semicontinuity of parametric
|
[15] | generalized vector equilibrium problems[J]. Journal of Global
|
[16] | Optimization, 2009, 45: 309-318.
|
[17] | {4}
|
[18] | ANH L Q, KHANH P Q. Continuity of solution maps of parametric
|
[19] | quasiequilibrium problems[J]. Journal of Global Optimization, 2010,
|
[20] | : 247-259.
|
[21] | {5}
|
[22] | BIANCHI M, KONNOV I V, PINI R. Lexicographic and sequential
|
[23] | equilibrium problems[J]. Journal of Global Optimization, 2010, 46:
|
[24] | 1-560.
|
[25] | {6}
|
[26] | BIANCHI M, KONNOV I V, PINI R. Lexicographic variational
|
[27] | inequalities with applications[J]. Optimization, 2006, 56: 355-367.
|
[28] | {7}
|
[29] | ANH L Q, KHANH P Q. Semicontinuity of solution sets to parametric
|
[30] | quasivariational inclusions with applications to traffic networks I:
|
[31] | uper semicontinuities[J]. Set-Valued Analysis, 2008, 16: 267-279.
|
[32] | {8}
|
[33] | LI S J, FANG Z M. Lower semicontinuity of the solution mappings to a
|
[34] | parametric generalized Ky Fan inequality[J]. Journal of Optimization
|
[35] | Theory and Applications, 2010, 147: 507-515.
|
[36] | {9}
|
[37] | GONG X H, YAO J C. Lower semicontinuity of the set of efficient
|
[38] | solutions for generalized systems[J]. Journal of Optimization Theory
|
[39] | and Applications, 2008, 138: 197-205.
|
[40] | {10}
|
[41] | AUBIN J P, EKELAND I. Applied Nonlinear Analysis[M]. New York:
|