全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

加权的~Coxeter~群~$\widetilde{\bmC}_{\bmn}$~的左胞腔

Keywords: 仿射~Weyl~群,左胞腔,拟分裂,加权的~Coxeter~群

Full-Text   Cite this paper   Add to My Lib

Abstract:

仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)在某个群同构~$\alpha$~(其中~$\alpha(\widetilde{S})=\widetilde{S}$)~下的固定点集合能被看作是仿射~Weyl~群~($\widetilde{C}_n,S$).那么加权的~Coxeter~群\($\widetilde{C}_n,\widetilde{\ell}$)的左和双边胞腔($\widetilde{\ell}$是仿射~Weyl~群~$\widetilde{A}_{2n}$~的长度函数),就能通过研究仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)在群同构~$\alpha$~下的固定点集合而给出一个清晰的划分.因此给出了加权的~Coxeter~群~($\widetilde{C}_n,\widetilde{\ell}$)对应于划分\$\textbf{k}\textbf{1}^{\textbf{2n+1-k}}$~和~$(2n-1,2)$的所有左胞腔的清晰刻画,这里对所有的~$1\leqslantk\leqslant2n+1$.

References

[1]  {1}
[2]  LUSZTIG G. Hecke algebras with unequal parameters [M]. Providence:
[3]  American Mathematical Society, 2003.
[4]  {2}
[5]  SHI J Y. Cells of the affine Weyl group $\widetilde{C}_n$ in a
[6]  $^\thicksim$jyshi/myart/quasisplifl.pdf.
[7]  {3}
[8]  LUSZTIG G. Some examples in square integrable representations of
[9]  semisimple p-adic groups [J]. Trans Amer Math Soc, 1983, 277:
[10]  3-653.
[11]  {4}
[12]  SHI J Y. The Kazhdan-Lusztig cells in certain affine Weyl groups
[13]  Berlin: Springer-Verlag, 1986.
[14]  {5}
[15]  KAC V. Infinite Dimensional Groups with Applications [M]. New York:
[16]  Springer-Verlag, 1985.
[17]  {6}
[18]  SHI J Y. The partial order on two-sided cells of certain affine Weyl
[19]  groups [J]. J Algebra, 1996, 179(2): 607-621.
[20]  {7}
[21]  SHI J Y. A survey on the cell theory of affine Weyl groups [J].
[22]  Advances in Science of China, 1990, Math 3: 79-98.
[23]  {8}
[24]  GREENE C. Some partitions associated with a partially ordered set
[25]  J Comb Theory A, 1976, 20: 69-79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133