加权的~Coxeter~群~$\widetilde{\bmC}_{\bmn}$~的左胞腔
Keywords: 仿射~Weyl~群,左胞腔,拟分裂,加权的~Coxeter~群
Abstract:
仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)在某个群同构~$\alpha$~(其中~$\alpha(\widetilde{S})=\widetilde{S}$)~下的固定点集合能被看作是仿射~Weyl~群~($\widetilde{C}_n,S$).那么加权的~Coxeter~群\($\widetilde{C}_n,\widetilde{\ell}$)的左和双边胞腔($\widetilde{\ell}$是仿射~Weyl~群~$\widetilde{A}_{2n}$~的长度函数),就能通过研究仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)在群同构~$\alpha$~下的固定点集合而给出一个清晰的划分.因此给出了加权的~Coxeter~群~($\widetilde{C}_n,\widetilde{\ell}$)对应于划分\$\textbf{k}\textbf{1}^{\textbf{2n+1-k}}$~和~$(2n-1,2)$的所有左胞腔的清晰刻画,这里对所有的~$1\leqslantk\leqslant2n+1$.
References
[1] | {1}
|
[2] | LUSZTIG G. Hecke algebras with unequal parameters [M]. Providence:
|
[3] | American Mathematical Society, 2003.
|
[4] | {2}
|
[5] | SHI J Y. Cells of the affine Weyl group $\widetilde{C}_n$ in a
|
[6] | $^\thicksim$jyshi/myart/quasisplifl.pdf.
|
[7] | {3}
|
[8] | LUSZTIG G. Some examples in square integrable representations of
|
[9] | semisimple p-adic groups [J]. Trans Amer Math Soc, 1983, 277:
|
[10] | 3-653.
|
[11] | {4}
|
[12] | SHI J Y. The Kazhdan-Lusztig cells in certain affine Weyl groups
|
[13] | Berlin: Springer-Verlag, 1986.
|
[14] | {5}
|
[15] | KAC V. Infinite Dimensional Groups with Applications [M]. New York:
|
[16] | Springer-Verlag, 1985.
|
[17] | {6}
|
[18] | SHI J Y. The partial order on two-sided cells of certain affine Weyl
|
[19] | groups [J]. J Algebra, 1996, 179(2): 607-621.
|
[20] | {7}
|
[21] | SHI J Y. A survey on the cell theory of affine Weyl groups [J].
|
[22] | Advances in Science of China, 1990, Math 3: 79-98.
|
[23] | {8}
|
[24] | GREENE C. Some partitions associated with a partially ordered set
|
[25] | J Comb Theory A, 1976, 20: 69-79.
|
Full-Text