[1] | {1}
|
[2] | MEYER M, WERNER E M. The Santal\''{o}-regions of a convex body[J].
|
[3] | {3}
|
[4] | SAINT RAYMOND J. Sur le volume des corps convexes
|
[5] | sym\''{e}triques[C]// S\''{e}minaire dinitiation\''{a} l''Analyse.
|
[6] | Paris: Univ Pierre et Marie Curie, 1980.
|
[7] | {6}
|
[8] | REISNER S. Random polytopes and the volume-product of symmetric
|
[9] | convex bodies[J]. Math Scand, 1985, 57: 386-392.
|
[10] | {7}
|
[11] | REISNER S. Zonoids with minimal volume-product[J]. Math Z, 1986,
|
[12] | 2: 339-346.
|
[13] | {8}
|
[14] | REISNER S. Minimal volume product in Banach spaces with a
|
[15] | unconditional basis[J]. London Math Soc, 1987, 36: 126-136.
|
[16] | {9}
|
[17] | GORDON Y, MEYER M, REISNER S. Zonoids with minimal volume product-a
|
[18] | new proof[J]. Proc Amer Math Soc, 1988, 104: 273-276.
|
[19] | {10}
|
[20] | BOURGAIN J, MILMAN V D. New volume ratio properties for convex
|
[21] | symmetric bodies in Rn[J]. Invent Math, 1987, 88: 319-340.
|
[22] | {11}
|
[23] | BALL K. Mahler''s conjecture and wavelets[J]. Discrete Comput Geom,
|
[24] | 95, 13: 271-277.
|
[25] | {12}
|
[26] | FRADELIZI M, MEYER M. Some functional forms of Blaschke-Santal\''{o}
|
[27] | inequality[J]. Math Z, 2007, 256: 379-395.
|
[28] | {18}
|
[29] | FRADELIZI M, MEYER M. Increasing functions and inverse Santal\''{o}
|
[30] | inequality for unconditional functions[J]. Positivity, 2008, 12:
|
[31] | Trans Amer Math Sci, 1998, 350(11): 4569-4591.
|
[32] | {2}
|
[33] | MEYER M, PAJOR A. On the Blaschke-Santal\''{o} inequality[J]. Arch
|
[34] | Math (Basel), 1990, 55: 82-93.
|
[35] | {4}
|
[36] | MAHLER K. Ein \"{U}bertragungsprinzip f\"{u}r Konvexe K\"{o}rper[J].
|
[37] | u{C}asopis P\u{e}st Mat Fys, 1939, 68: 93-102.
|
[38] | {5}
|
[39] | MAHLER K. Ein Minimalproblem f\"{u}r Konvexe Polygone[J].
|
[40] | Mathematica (Zutphen), 1939, 7: 118-127.
|
[41] | LOPEZ M A, REISNER S. A special case of Mahler''s conjecture[J].
|
[42] | Discrete Comput Geom, 1998, 20: 163-177.
|
[43] | {13}
|
[44] | B\"{O}R\"{O}CZKY K J, HUG D. Stability of the reverse
|
[45] | Blaschke-Santal\''{o} inequality for zonoids and applications[J]. Adv
|
[46] | Appl Math, 2010, 44: 309-328.
|
[47] | {14}
|
[48] | BARTHE F, FRADELIZI M. The volume product of convex bodies with many
|
[49] | {15}
|
[50] | ARTSTEIN S, KLARTAG B, MILMAN V D. On the Santal\''{o} point of a
|
[51] | function and a functional Santal\''{o} inequality[J]. Mathematika,
|
[52] | 04, 54: 33-48.
|
[53] | {16}
|
[54] | FRADELIZI M, GORDON Y, MEYER M, et al. The case of equality for an
|
[55] | inverse Santal\''{o} functional inequality[J]. Adv Geom, 2010, 10:
|
[56] | 1-630.
|
[57] | {17}
|
[58] | 7-420.
|
[59] | {19}
|
[60] | FRADELIZI M, MEYER M. Some functional inverse Santal\''{o}
|
[61] | inequalities[J]. Adv Math, 2008, 218: 1430-1452.
|
[62] | {20}
|
[63] | FRADELIZI M, MEYER M. Functional inequalities related to Mahler''s
|
[64] | conjecture[J]. Monatsh Math, 2010, 159: 13-25.
|
[65] | {21}
|
[66] | GROEMER H. Geometric Applications of Fourier Series and Spherical
|
[67] | Harmonics[M]. New York: Cambridge University Press, 1996.
|
[68] | {22}
|
[69] | KOLDOBSKY A. Fourier Analysis in Convex Geometry[M]. Providence, RI:
|
[70] | Amer Math Soc, 2005.
|
[71] | {23}
|
[72] | SCHNEIDER R. Convex Bodies: The Brunn-Minkowski Theory[M].
|
[73] | Cambridge: Cambridge University Press, 1993.
|
[74] | {24}
|
[75] | WANG Z, GUO D. Special Functions[M]. Singapore: World Scientific
|
[76] | Publishing Co, 1989.
|
[77] | {25}
|
[78] | ANDREWS G, ASKEY R, ROY R. Special Functions[M]. Cambridge:
|
[79] | Cambridge Univ Press, 2000.
|
[80] | {26}
|
[81] | AKHIEZER N I. The Classical Moment Problem, and Some Related
|
[82] | Questions in Analysis[M]. Edinburgh: Oliver and Boyd, 1965.
|