BASSE A. Spectral representation of Gaussian semimartingales [J]. Journal of Theoretical Probability, 2009, 22: 811-826.
[2]
TAQQU M S. Beno\^{i}t Mandelbrot and fractional Brownian motion [J]. Statistical Science, 2013, 28: 131-134.
[3]
BARNDORFF-NIELSEN O E, CORCUERA J M, PODOLSKIJ M. Multipower variation for Brownian semistationary processes [J]. Bernoulli, 2011, 17: 1159-1194.
[4]
PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical Recipes [M]//Fortran 77, the Art of Scientific Computing. 2nd ed. Cambridge: Cambridge University Press, 1992.
[5]
IBRAGIMOV I A, LINNIK Y V. Independent and Stationary Sequences of Random Variables [M]. Groningen: Wolters-Noordhoff, 1971.
[6]
DOUKHAN P. Mixing: Properties and Examples [M]. New York: Springer, 1994.
[7]
GRADSHTEYN I S, RYZHIK I M. Table of Integrals, Series, and Products [M]. New York: Academic Press, 2007.
[8]
FRISTEDT B, GRAY L. A Modern Approach to Probability Theory [M]. Boston: Birkh\"{a}user, 1996.
[9]
RAJPUT B S, ROSINSKI J. Spectral representations of infinitely divisible processes [J]. Probability Theory and Related Fields, 1989, 82: 451-487.
[10]
ZHANG S. On some dependence structures for multidimensional l\''{e}vy driven moving averages [J]. Journal of the Korean Statistical Society, 2012, 41: 555-562.
[11]
ZHANG S, LIN Z, ZHANG X. A least squares estimator for L\''{e}vy-driven moving averages based on discrete time observations [J]. Communications in Statistics-Theory and Methods, 2013, DOI:10.1080/03610926.2012.763093. (published online)
[12]
BASSE A. Gaussian moving averages and semimartingales [J]. Electronic Journal of Probability, 2008, 13: 1140-1165.
[13]
POLITIS D N, ROMANO J P. A general resampling scheme for triangular arrays of \alpha-mixing random variables with application to the problem of spectral density estimation [J]. Annals of Statistics, 1992, 20: 1985-2007.
[14]
陈希孺. 高等数理统计学~[M]. 合肥: 中国科学技术大学出版社, 1999.
[15]
WOOD A T A, CHAN G. Simulation of stationary Gaussian processes in [0,1]d [J]. Journal of Computational and Graphical Statistics, 1994, 3: 409-432.
[16]
DIEKER A B, MANDJES M. On spectral simulation of fractional Brownian motion [J]. Probability in the Engineering and Informational Sciences, 2003, 17: 417-434.