全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于词典与语料结合的中文微博主观句抽取方法

Keywords: 情感词典,高可信情感词典,N-POSW模型,主观句

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于词典与语料结合的中文微博主观句抽取方法,通过判断句子中是否包含情感表达文本来判断句子是否为主观句.首先,从现有的情感词典中挑选出情感倾向较为固定的情感词构建了一个高可信情感词典,用于抽取句子中的情感表达文本,保证情感表达文本抽取的准确率;然后提出~N-POSW~模型,并基于~2-POS~W模型通过语料学习的方法较为准确地抽取句子中的剩余情感表达文本,保证了情感表达文本抽取的召回率.实验结果表明,相比于传统的基于大规模情感词典的方法,本文方法主观句抽取的F值提高了7%.

References

[1]  KIM S M, HOVY E. Automatic detection of opinion bearing words and sentences[C]//Companion Volume to the Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP). Berlin: Springer, 2005: 61-66.
[2]  WIEBE J, WILSON T, BELL M. Identifying collocations for recognizing opinions[C]//Proceedings of the ACL''01 Workshop on Collocation: Computational Extraction, Analysis, and Exploitation. Toulouse, FR: ACL, 2001: 24-31.
[3]  WIEBE J, WILSON T. Learning to disambiguate potentially subjective expressions[C]//Proceedings of the 6th conference on Natural language learning-Volume 20. Stroudsburg, PA: Association for Computational Linguistics, 2002: 1-7.
[4]  WILSON T, WIEBE J, HWA R. Just how mad are you? Finding strong and weak opinion clauses[C]//Proceedings of the National Conference on Artificial Intelligence. Menlo Park, CA; MIT Press; 1999, 2004: 761-769.
[5]  WILSON T, WIEBE J, HEA R. Recognizing strong and weak opinion clauses[J]. Computational Intelligence. 2006, 22(2): 73-99.
[6]  PANG B, LEE L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts[C]//Proceedings of the 42nd annual meeting on Association for Computational Linguistics. [S.l.]: Association for Computational Linguistics, 2004: 271-278.
[7]  LONG J, MO Y. Target-dependent Twitter Sentiment Classification [C]//Proceeding of the 49th Annual meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2011: 151-160.
[8]  叶强, 张紫琼, 罗振雄. 面问互联网评论情感分析的中文主观性自动判别方法研究[J]. 信息系统学报, 2007, 1(1): 7-91.
[9]  张博. 基于~SVM~的中文观点句抽取[D]. 北京邮电大学, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133