全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

奇Hamilton李超代数偶部到奇部的导子

, PP. 1-7

Keywords: 除幂代数,导子,奇Hamilton超代数

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对特征大于~3~域上有限维奇\,Hamilton\,型李超代数偶部到奇部的导子问题,首先利用偶部的生成元集,通过计算导子在其生成元集上的作用,确定了偶部到奇部的负\,$\mathbb{Z}$-齐次导子.然后应用偶部的性质,得到了偶部到奇部的非负\,$\mathbb{Z}$-齐次导子;进而奇\,Hamilton\,李超代数偶部到奇部的导子得以刻画.所得结果对于进一步研究李超代数的结构、表示和分类有重要意义.

References

[1]  KAC V G. Lie superalgebras[J]. Adv Math, 1977, 26(1): 8-96.
[2]  LIU W D, ZHANG Y Z. Derivations for the even parts of modular Lie superalgebras W and S of Cartan type[J]. Internat J Algebra Computation, 2007, 17(4): 661-714.
[3]  刘文德, 苏育才, 张永正. 素特征Hamilton超代数的偶部[J]. 数学年刊, 2010, 31A(5): 579-596.
[4]  KAC V G. Classification of infinite-dimensional simple linearly compact Lie superalgebras[J]. Adv Math, 1998, 139: 1-55.
[5]  SUN H Z, HAN Q Z. A survey of Lie superalgebras[J]. Adv Phys (PRC), 1983, 1: 81-125 (in Chinese).
[6]  PETROGRADSKI V M. Identities in the enveloping algebras for modular Lie superalgebras[J]. J Algebra, 1992, 145: 1-21.
[7]  CELOUSOV M J. Derivations of Lie algebras of Cartan-type[J]. Izv Vyssh Uchebn Zaved Mat, 1970, 98: 126-134 (in Russian).
[8]  STRADE H, FARNSTEINER R. Modular Lie algebras and their representations[M]. Monogr Texbooks Pure Appl Math 116. New York: Dekker, 1988: 99-138.
[9]  STRADE H. Simple Lie algebras over fields of positive characteristic: I Structure theory[M]. Berlin: Walter de Gruyter, 2004: 184-199.
[10]  ZHANG Q C, ZHANG Y Z. Derivation algebras of modular Lie superalgebras W and S of Cartan-type[J]. Acta Math Sci, 2000, 20(1): 137-144.
[11]  WANG Y, ZHANG Y Z. Derivation algebra Der(H) and central extensions of Lie superalgebras[J]. Commun Algebra, 2004, 32: 4117-4131.
[12]  MA F M, ZHANG Q C. Derivation algebras of modular Lie superalgebras K of Cartan-type[J]. J Math (PRC), 2000, 20(4): 431-435.
[13]  LIU W D, ZHANG Y Z, WANG X L. The derivation algebra of the Cartan-type Lie superalgebra HO[J]. J Algebra, 2004, 273: 176-205. {zh} 邹旭娟, 刘文德. 一类~Witt~型李超代数的超导子代数[J]. 数学杂志, 2011, 31(3): 469-475.
[14]  LIU W D, ZHANG Y Z. The outer derivation algebras of finite-dimensional Cartan-type modular Lie superalgebras[J]. Commun. Algebra, 2005, 33(7): 2131-2146.
[15]  关宝玲, 刘文德, 何兰. 接触李超代数偶部的具有负次数的导子[J]. 黑龙江大学自然科学学报, 2010, 27(2): 205-209.
[16]  LIU W D, HUA X Y, SU Y C. Derivations of the even part of the odd Hamiltonian superalgebra in modular case[J]. Acta Math Sin(Engl Ser), 2009, 25(3): 355-378.
[17]  华秀英, 刘文德. 奇Hamilton李超代数偶部的非负mathbb{Z}-齐次导子空间[J]. 哈尔滨理工大学学报, 2013, 18(1):76-79.
[18]  HUA X Y, LIU W D. Negative mathbb{Z}-homogeneous derivations for even parts of odd Hamiltonian superalgebras[J]. J Math Res Appl, 2013, 33(3): 337-344.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133