全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于强幂级数McCoy环

, PP. 60-76

Keywords: McCoy环,强McCoy环,幂级数McCoy环,强幂级数McCoy环,上三角矩阵环

Full-Text   Cite this paper   Add to My Lib

Abstract:

强幂级数McCoy环是幂级数McCoy环和强McCoy环的一个推广.如果R是一个环,I是R的一个reduced理想,给出了如果R/I是强幂级数McCoy环(幂级数McCoy环),那么R是强幂级数McCoy环(幂级数McCoy环).环R是幂级数McCoy环当且仅当R[x]是幂级数McCoy环.找到了强幂级数McCoy环上的上三角矩阵环的一类强幂级数McCoy子环,得出了幂级数McCoy环和reduced环是强幂级数McCoy环.

References

[1]  NIELSEN P P. Semi-commutativity and the McCoy condition [J]. J Algebra, 2006, 298: 134-141.
[2]  MCCOY N H. Remaks on divisors of zero [J]. Amer Math Monthly, 1942, 49: 286-295.
[3]  HONG C Y, JEON Y C, KIM N K, et al. The McCoy condition on noncommutative rings [J]. Comm Algebra, 2011, 39: 1809-1825.
[4]  YANG S Z, SONG X M, LIU Z K. Power-serieswise McCoy rings [J]. Algebra Collquium, 2011, 18(2): 301-310.
[5]  CAMILLO V P, NIELSEN P P. McCoy rings and zero-divisors [J]. Journal of Pure and Applied Algebra, 2008, 212: 599-615.
[6]  KIM N K, LEE K H, LEE Y. Power series rings satisfying a zero divisor property [J]. Comm Algebra, 2006, 34: 2205-2218.
[7]  HUH C, LEE Y, Agata Smoktunowicz, Armendariz rings and semicommutative rings [J]. Comm Algebra, 2002, 30: 751-761.
[8]  ANDERSON D D, CAMILLO V P. Armendariz rings and Gaussian rings [J]. Comm Algebra, 1998, 26: 2265-2272.
[9]  LEI Z, CHEN J L, YING Z L. A question on McCoy rings [J]. Bull Austral Math Soc, 2007, 76: 137-141.
[10]  LEE T K, WONG T L. On Armendariz rings [J] Houston J. Math, 2003, 29: 583-593.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133