OALib Journal期刊
ISSN: 2333-9721
费用:99美元
|
|
|
关于强幂级数McCoy环
, PP. 60-76
Keywords: McCoy环,强McCoy环,幂级数McCoy环,强幂级数McCoy环,上三角矩阵环
Abstract:
强幂级数McCoy环是幂级数McCoy环和强McCoy环的一个推广.如果R是一个环,I是R的一个reduced理想,给出了如果R/I是强幂级数McCoy环(幂级数McCoy环),那么R是强幂级数McCoy环(幂级数McCoy环).环R是幂级数McCoy环当且仅当R[x]是幂级数McCoy环.找到了强幂级数McCoy环上的上三角矩阵环的一类强幂级数McCoy子环,得出了幂级数McCoy环和reduced环是强幂级数McCoy环.
References
[1] | NIELSEN P P. Semi-commutativity and the McCoy condition [J]. J Algebra, 2006, 298: 134-141.
|
[2] | MCCOY N H. Remaks on divisors of zero [J]. Amer Math Monthly, 1942, 49: 286-295.
|
[3] | HONG C Y, JEON Y C, KIM N K, et al. The McCoy condition on noncommutative rings [J]. Comm Algebra, 2011, 39: 1809-1825.
|
[4] | YANG S Z, SONG X M, LIU Z K. Power-serieswise McCoy rings [J]. Algebra Collquium, 2011, 18(2): 301-310.
|
[5] | CAMILLO V P, NIELSEN P P. McCoy rings and zero-divisors [J]. Journal of Pure and Applied Algebra, 2008, 212: 599-615.
|
[6] | KIM N K, LEE K H, LEE Y. Power series rings satisfying a zero divisor property [J]. Comm Algebra, 2006, 34: 2205-2218.
|
[7] | HUH C, LEE Y, Agata Smoktunowicz, Armendariz rings and semicommutative rings [J]. Comm Algebra, 2002, 30: 751-761.
|
[8] | ANDERSON D D, CAMILLO V P. Armendariz rings and Gaussian rings [J]. Comm Algebra, 1998, 26: 2265-2272.
|
[9] | LEI Z, CHEN J L, YING Z L. A question on McCoy rings [J]. Bull Austral Math Soc, 2007, 76: 137-141.
|
[10] | LEE T K, WONG T L. On Armendariz rings [J] Houston J. Math, 2003, 29: 583-593.
|
Full-Text
|
|
Contact Us
service@oalib.com QQ:3279437679 
WhatsApp +8615387084133
|
|