全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

时标上三阶时滞动力方程的振动性和渐近性

, PP. 51-59

Keywords: 振动性,时滞动力方程,Riccati变换,不等式技巧,时标

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了时标上的一类非线性三阶中立型时滞动力方程的振动性,运用\,Riccati\,变换技术和大量的不等式技巧,获得了该方程的每一个解或者振动或者渐近于零的新充分条件,推广和改进了一些已知结果,并以具体例子来说明了本文的主要结论.

References

[1]  HILGER S. Analysis on measure chains---\,a unified approach to continuous and discrete calculus [J]. Results Math, 1990, 18: 18-56.
[2]  BOHNER M, PETERSON A. Dynamic Equations on Time Scales, an Introduction with Applications [M]. Boston: Birkhauser, 2001.
[3]  AGARWAL R P, BOHNER M, GRACE S R, et al. Discrete Oscillation Theory [M]. New York: Hindawi Publishing Corporation, 2005.
[4]  AGARWAL R P, GRACE S R, O''REGAN D. Oscillation theory for second order linear, Half-linear [M]//Superlinear and Sublinear Dynamic Equations. Dordrecht: Kluwer Academic, 2002.
[5]  ZHANG Q X, GAO L. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales [J]. Sci Sin Math, 2010, 40(7): 673-682.
[6]  SAHINER Y. Oscillation of second order delay differential equations on time scales [J]. Nonlinear Analysis, TMA, 2005, 63: e1073-e1080.
[7]  韩振来, 孙书荣, 张承慧. 时间尺度上二阶中立型时滞动力方程的振动性~[J]. 中山大学学报: 自然科学版, 2010, 49(5): 21-24.
[8]  杨甲山. 时间测度链上一类具阻尼项的二阶动力方程的振动准则~[J]. 上海交通大学学报, 2012, 46(9): 1529-1533, 1538.
[9]  孙书荣, 韩振来, 张承慧. 时间尺度上二阶\,Emden-Fowler\,中立型时滞动力方程的振动准则~[J]. 上海交通大学学报, 2008, 42(12): 2070-2075.
[10]  李同兴, 韩振来. 时间尺度上二阶超线性动力方程振动性~[J]. 济南大学学报: 自然科学版, 2010, 24(2): 209-211.
[11]  }
[12]  孙一冰, 韩振来, 李同兴. 二阶拟线性中立型动力方程振动准则~[J]. 济南大学学报: 自然科学版, 2010, 24(3): 308-311.
[13]  张光荣, 孙书荣. 二阶非线性时滞动力方程的振动性~[J]. 济南大学学报: 自然科学版, 2010, 24(4): 414-416.
[14]  杨甲山. 时间测度链上二阶动力方程的振动准则~[J]. 华东师范大学学报: 自然科学版, 2012(3): 17-23.
[15]  HAN Z, LI T, SUN S, CAO F. Oscillation criteria for third order nonlinear delay dynamic equations on time scales [J]. Ann Polon Math, 2010, 99: 143-156.
[16]  HAN Z, LI T, SUN S, ZHANG C. Oscillation behavior of third-order neutral Emden-Fowler delay dynamic equations on time scales [J]. Adv Diff Eq, 2010, 2010: 1-23.
[17]  HASSAN T S. Oscillation of third order nonlinear delay dynamic equations on time scales [J]. Math Comput Model, 2009, 49:1573-1586.
[18]  ERBE L, HASSAN T S, PETERSON A. Oscillation of third order nonlinear functional dynamic equations on time scales [J]. Differential Equations Dynamical Systems, 2010, 18: 199-227.
[19]  张少艳, 王其如. 一类三阶非线性时标动态方程的振动性~[J]. 中山大学学报: 自然科学版, 2012, 51(4): 50-55.
[20]  ERBE L, PETERSON A, SAKER S H. Hille and Nehari type criteria for third order dynamic equations [J]. J Math Anal Appl, 2007, 329: 112-131.
[21]  李同兴, 韩振来, 张承慧, 等. 时间尺度上三阶\,Emden-Fowler\,动力方程的振动准则~[J]. 数学物理学报, 2012, 32A(1): 222-232.
[22]  HAN Z L, LI T X, SUN S R, et al. Oscillation behavior of solutions of third-order nonlinear delay dynamic equations on time scales [J]. Commun Korean Math Soc. 2011, 26(3): 499-513.
[23]  罗李平, 俞元洪. 三阶半线性中立型微分方程的振动结果~[J]. 系统科学与数学, 2012, 32(5): 571-579.
[24]  杨甲山, 孙文兵. 具正负系数的二阶差分方程的振动性 [J]. 山东大学学报: 理学版, 2011, 46(8): 59-63.
[25]  AGARWAL R P, BOHNER M, LI W T. Nonoscillation and Oscillation: Theory for Functional Differential Equations [M]. New York: Marcel Dekker, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133