全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带p-Laplacian算子的分数阶耦合系统在共振条件下的边值问题

, PP. 30-39

Keywords: 分数阶微分方程,边值问题,迭合度,p-Laplacian算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用葛渭高的Mawhin延拓定理的外延理论,证明了当dimKerM=2时解的存在性定理,其中~$M$~为构造的拟线性算子.并给出了例子,验证这个定理.

References

[1]  HEGAZI A S, AHMED E, MATOUK A E. On chaos control and synchronization of the commensurate fractional order Liu system [J]. Communications in Nonlinear Science \& Numerical Simulation, 2013, 18: 1193-1202.
[2]  FENG H, A symmetric solution of a multipoint boundary value problem with one-dimensional p-Laplacian at resonance [J]. Nonlinear Analysis: Theory, Methods \& Applications, 2008, 10: 3964-3972.
[3]  SU X. Boundary value problem for a coupled system of nonlinear fractional differential equations [J]. Applied Mathematics Letters, 2009, 22: 64-69.
[4]  JIANG W. Solvability for a coupled system of fractional differential equations at resonance [J]. Nonlinear Analysis: Real World Applications, 2012, 13: 2285-2292.
[5]  GE W, REN. An extension of Mawhin''s continuation theorem and its application to boundary value problems with p-Laplacian . Nonlinear Analysis, 2004, 58: 477-488.
[6]  PODLUBNY I. Fractional differential equation [M]. San Diego: Academic Press, 1999.
[7]  SAMKO S G. Fractional integrals and derivatives: Theory and Applications [M]. Switzerland: Gordon and Breach, 1993.
[8]  SANDERSE B. Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations [J]. Journal of Computational Physics, 2013, 233: 100-131.
[9]  KILBAS A A. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier Science, 2006.
[10]  MILLER K S. An Introduction to the Fractional Calculus and Differential Equations [M]. New York: John \& Wiley, 1993.
[11]  LAKSHMIKANTHAM V, VATSALA A S. Basic theory of fractional differential equations [J]. Nonlinear Analysis: Theory, Methods \& Applications, 2008, 69: 2677-2682.
[12]  BABAKHANI A, DAFTARDAR G V. Existence of positive solutions for N-term non-autonomous fractional differential equations [J]. Positivity, 2005, 9: 193-206.
[13]  BAI C Z. Positive solutions for nonlinear fractional differential equations with coefficient that changes sign [J]. Nonlinear Analysis: Theory, Methods \& Applications, 2006, 64: 677-689.
[14]  AGARWAI R P, OREGA D, STANEK S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations [J]. Journal of Mathematical Analysis and Applications , 2008, 69: 2677-2682.
[15]  BENCHOHRA M, HENDERSON J, NTOUYAS SK. Existence results for positive solutions for fractional order functional differential equations with infinite delay [J]. Journal of Mathematical Analysis and Applications, 2005, 338: 1340-1350.
[16]  ZHOU W, PENG J. Existence of solutions to boundary value problem for fractional differential equations [J]. Chinese Journal of engineering Mathematics, 2011, 28: 727-735.
[17]  AHMADB, SIVASUNDARAM S. Existence results for nonlinear impulsive hybrid boundary value problem involving fractional differential equations [J]. Nonlinear Analysis: Hybrid Systems, 2009, 3: 251-258.
[18]  BAI Z, LV H. Positive solutions for boundary value problem of nonlinear fractional differential equation [J]. Journal of Mathematical Analysis and Applications, 2005, 311: 495-505.
[19]  WANG G, LIU W, ZHU S. The existence solutions for a fractional 2m-point boundary value problems [J]. Journal of Applied Mathematics, 2012: 2012: 1-14.
[20]  ZHANG Y, BAI Z. Existence of solutions for nonlinear fractional three-point boundary value problems at resonance [J]. Journal of Applied Mathematics and Computing, 2012, 36: 417-440.
[21]  ZHANG s, ZHANG J. Positive solutions for boundary-value problems of nonlinear fractional differential equation [J]. Nonlinear Analysis: Theory, Methods \& Applications, 2006, 36: 1-12.
[22]  LIANG s, LV H. Positive solutions for boundary value problem of nonlinear fractional differential equation [J]. Journal of Mathematical Analysis and Applications, 2009, 71: 5545-5550.
[23]  BENCHOHRA M, HAMANI S, NTOUYAS SK. Boundary value problem for differential equations with fractional order and nonlocal conditions [J]. Nonlinear Analysis: Theory, Methods \& Applications, 2009, 71: 2391-2396.
[24]  CHEN T, LIU W, CHENG Y. Antiperiodic solutions for Linard-type differential equation with p-Laplacian operator [J]. Boundary Value Problems, 2010, 2010: 1-12.
[25]  LIAN L, GE W. The existence of solutions of m-point \emph{p}-Laplacian boundary value problems at resonance [J]. Acta Mathematicae Applicatae Sinica, 2005, 28: 288-295.
[26]  LIU B. On the existence of solutions for the periodic boundary value problems with \emph{p}-Laplacian operator [J]. Jouranl of systems Science Mathematical Sciences, 2003, 23: 76-85.
[27]  LAKSHMIKANTHAM V. Theory of fractional dynamic systems [M]. Cambridge: Cambridge Academic Publishers, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133