BAILLIC R. Long memory process and fractional integration in econometrics [J]. Journal of Econometrics, 1996, 1: 5-59.
[2]
BERAN J. Statistical methods for data with long range dependences [J]. Statistics Science, 1992, 7: 404-427.
[3]
BROCKWELL P, Davis R. Time Series: Theory and Methods [M]. Springer-Verlag, 1991
[4]
CHERIDITO P. Arbitrage in fractional Brownian motion models, Finance and Stochastics, 2003, 7 (4): 533-553.
[5]
DUNCAN T E, HU Y Z, PASIC-DUNCAN B. Stochastic calculus for fractional Brownain motion I: Theorey. SIAM: Journal of Control and Optimizaiton, 2000(38): 582-612.
[6]
PETERS E. Fractal Market Analysis [M], New York: John &Wiley, 1994.
[7]
GRANGER C, DING Z. Varieties of long memory models [J]. Journal of Econometrics, 1996, 73(1): 61-77.
[8]
HURST H E. Long term storage capacity of reservoirs. Transaction of the American Society of Civil Engineers, 1951, 116: 770-799
[9]
LU Z, GUEGAN D. Testing unit roots and long range dependence of foreign exchange [J]. Journal of Time Series Analysis, 2010, 7: 1-8.
[10]
LO A W. Long-term memory in stock market prices [J]. Econometrica, 1991(59): 1279-1313.
[11]
LO A W, MacKinlay C. Stock market prices do not follow random walks: Evidence from a simple specification test [J]. Review of Financial Study, 1988(1): 41-66.
[12]
MANDELBROT B B, NESS J W V. Fractional Brownian Motions, Fractional Noises and Applications [J]. SIAM Review, 1968(10): 422-437.
[13]
ROBINSON, P. Efficient tests for no-stationary hypothesis [J]. Journal of the American Statistical Association, 1994, 89: 1420-1437.
[14]
WILLINGER W, TAQQU M, TEVEROVSKY V. Stock market prices and long-range dependence [J]. Finance and Stochastics, 1999: 1-13.
[15]
SOTTINEN T, VALKEILA E. On arbitrage and replication in the fractional Black-Scholes pricing model [J]. Statistics & Decisions, 2003. 21: 137-151.