全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thomassen与曲面嵌入图的着色

Keywords: 曲面,嵌入图,着色,色多项式

Full-Text   Cite this paper   Add to My Lib

Abstract:

曲面嵌入图的着色的研究起源于\,Heawood\,地图着色定理.本文在对原始文献进行研究的基础上,论述\,Thomassen\,在三色定理与列表着色、曲面嵌入图的着色、色多项式和着色的数目等方面的工作.他的研究受到了Mohar,Thomas和\,Hutchinson\,等许多数学家的关注.

References

[1]  MOHAR B, THOMASSEN C. Graphs on Surfaces [M]. London: Johns Hopkins University Press, 2001.
[2]  BEINEKE L W, WILSON R J. Topics in Topological Graph Theory [M]. London: Cambridge University Press, 2009.
[3]  JENSEN T, TOFT B. Graph coloring problems [M]. New York: John Wiley, 1995.
[4]  HUTCHINSON J P. Automorphism properties of embedded graphs [J]. J Graph Theory, 1984, 8: 35-49.
[5]  WANG W F, CHEN M. Planar graphs without 4-cycles are acyclically 6-choosable [J]. J Graph Theory, 2009, 61: 307-323.
[6]  XU B G. A 3-color theorem on plane graphs without 5-circuits [J]. Acta Math Sinica, 2007, 23: 1059-1062.
[7]  HEAWOOD P J. Map colour theorem [J]. Quart J Pure Appl Math, 1890, 24: 332-338.
[8]  APPEL K, HAKEN W. Every planar map is four colorable, Part I: Discharging [J]. Ill J Math, 1977, 21: 429-490.
[9]  APPEL K, HAKEN W, KOCH J. Every planar map is four colorable, Part II: Reducibility [J]. Ill J Math, 1977, 21: 491-567.
[10]  ROBERTSON N, SANDERS D P, SEYMOUR P, et al. The four-colour theorem [J]. J Combin Theory Ser B, 1997, 70: 2-44.
[11]  VIZING V G. Vertex coloring with given colors (Russian) [J]. Metody Diskret Analiz, 1976, 29: 3-10.
[12]  ERD\H{O}S P, RUBIN A L, TAYLOR H. Choosability in graphs [J]. Congr Num, 1979, 26: 125-157.
[13]  VOIGT M. List colorings of planar graphs [J]. Discrete Math, 1993, 120: 215-219.
[14]  THOMASSEN C. Every planar graph is 5-choosable [J]. J Combin Theory Ser B, 1994, 62: 180-181.
[15]  THOMASSEN C. Five-coloring graphs on the torus [J]. J Combin Theory Ser. B, 1994, 62: 11-33.
[16]  DIRAC G A. Map color theorem [J]. Canad J Math, 1952, 4: 480-490.
[17]  ALBERTSON M O, HUTCHINSON J P. The three excluded cases of Dirac''s map color theorem [J]. Ann New York Acad Sci, 1979, 319: 7-17.
[18]  B\"{O}HME T, MOHAR B, STIEBITZ M. Dirac''s map theorem for choosability [J]. J Graph Theory, 1999, 32: 327-339. 3.0.CO;2-B target="_blank">
[19]  KR\''{A}L D, \v{S}KREKOVSKI R. The last excluded case of Dirac''s map-color theorem for choosability [J]. J Graph Theory, 2006, 51: 319-354.
[20]  THOMASSEN C. Embeddings of graphs with no short non-contractible cycles [J]. J Combin Theory Ser B, 1990, 48: 155-177.
[21]  THOMASSEN C. Five-coloring maps on surfaces [J]. J Combin Theory Ser B, 1993, 59: 89-105.
[22]  FISK S, MOHAR B. Coloring graphs without short non-bounding cycles [J]. J Combin Theory Ser B, 1994, 60: 268-276.
[23]  HUTCHINSON J P. A five-color theorem for graphs on surfaces [J]. Proc Amer Math Soc, 1984, 90: 497-504.
[24]  YU X. Disjoint paths, planarizing cycles, and spanning walks [J]. Trans Amer Math Soc, 1997, 349: 1333-1358.
[25]  ALBERTSON M O, STROMQUIST W R. Locally planar toroidal graphs are 5-colorable [J]. Proc Amer Math Soc, 1982, 84: 449-456.
[26]  DEVOS M, KAWARAYABASHI K I, MOHAR B. Locally planar graphs are 5-choosable [J]. J Combin Theory Ser B, 2008, 98: 1215-1232.
[27]  KAWARAYABASHI K I, MOHAR B. Star colorings and acyclic colorings of locally planar graphs [J]. SIAM J Discrete Math, 2010, 24: 56-71.
[28]  MOHAR B. Acyclic coloring of locally planar graphs [J]. European J Combin, 2005, 6: 491-503.
[29]  DIRAC G A. The coloring of maps [J]. J London Math Soc, 1953, 28: 476-480.
[30]  GALLAI T. Kritische Graphen I, II [J]. Publ Math Inst Hungar AcadSci, 1963, 8: 165-192, 373-395.
[31]  CHENETTE N. POSTLE L, STREIB N, et al. Five-colorings graphs on the Klein bottle [J]. J Combin Theory Ser B, 2012, 102: 1067-1098.
[32]  KAWARAYABASHI K I, K\''{R}AL D, KYN\v{C}L J, et al. 6-critical graphs on the Klein bottle [J]. SIAM J Discrete Math, 2009, 23: 372-383.
[33]  GIMBEL J, THOMASSEN C. Coloring graphs with fixed genus and girth [J]. Trans Amer Math Soc, 1997, 349: 4555-4564.
[34]  THOMASSEN C. The chromatic number of a graph of girth 5 on a fixed surface [J]. J Combin Theory Ser B, 2003, 87: 38-71.
[35]  MOHAR B, SEYMOUR P D. Coloring locally bipartite graphs on surfaces [J]. J Combin Theory Ser B, 2002, 84: 301-310.
[36]  HUTCHINSON J P, RICHER R B, SEYMOUR P D. Coloring Eulerian triangulations [J]. J Combin Theory Ser B, 2002, 84: 225-239.
[37]  MOHAR B. Coloring Eulerian triangulations of the projective plane [J]. Discrete Math, 2002, 244: 339-343.
[38]  KR\''{A}L D, MOHAR B, NAKAMOTO A, et al. Coloring Eulerian triangulations of the Klein bottle [J]. Graphs and Combin, 2012, 28: 499-530.
[39]  ARCHDEACON D, HUTCHINSON J P, NAKAMOTO A, et al. Chromatic numbers of quadrangulations of closed surfaces [J]. J Graph Theory, 2001, 37: 100-114.
[40]  KR\''{A}L D, THOMAS R. Coloring even-faced graphs in the torus and the Klein bottle [J]. Combinatorica, 2008, 28: 325-341.
[41]  HUTCHINSON J P. Three-coloring graphs embedded on surfaces with all faces even-sided [J]. J Combin Theory Ser B, 1996, 65: 139-155.
[42]  YOUNGS D A. 4-chromatic projective graphs [J]. J Graph Theory, 1996, 21: 219-227. 3.0.CO;2-E target="_blank">
[43]  HAJ\''{O}S H. \"{U}ber eine Konstruktion nicht n-f\"{a}rbbarer Graphen [J]. Wiss Z Martin-Lutber-Univ Halle-Wittenberg Math-Nat Reibe, 1961, 10: 116-117.
[44]  HADWIGER H. \"{U}ber eine Klassifikation der. Streckenkomplexe [J]. Vierteljahrsch Naturforsch Ges Z\"{u}rich, 1943, 88: 133-142.
[45]  KEMPE A B. On the geographical problem of the four-colors [J]. Amer J Math, 1879, 2: 193-200.
[46]  THOMASSEN C. Color-critical graphs on a fixed surface [J]. J Combin Theory Ser. B, 1997, 70: 67-100.
[47]  FISK S. The non-existence colorings [J]. J Combin Theory Ser B, 1978, 24: 247-248.
[48]  AIGNER M, ZIEGLER G M. Proofs from the Book [M]. New York: Springer, 1991.
[49]  GR\"{O}TZSCH H. Ein Dreifarbensatz f\"{u}r dreikreisfreie Netze auf der Kugel [J]. Wiss Z Martinluther-Univ Halle-Wittenberg Math-Natur Reihe, 1959, 8: 109-120.
[50]  THOMASSEN C. Gr\"{o}tzsch''s theorem and its counterpart for the torus and the projective plane [J]. J Combin Theory Ser B, 1994, 62: 268-279.
[51]  STEINBERG R, YOUNGER D H. Gr\"{o}tzsch''s theorem for the projective plane [J]. Ars Combin, 1989, 28: 15-31.
[52]  THOMAS R, WALLS B. Three-coloring Klein bottle of girth five [J]. J Combin Theory Ser B, 2004, 92: 115-135.
[53]  VOIGT M. A not 3-choosable planar graphs [J]. Discrete Math, 1995, 146: 325-328.
[54]  THOMASSEN C. 3-list-coloring planar graphs of girth 5 [J]. J Combin Theory Ser B, 1995, 64: 101-107.
[55]  THOMASSEN C. A short list color proof of Gr\"{o}tzsch''s theorem [J]. J Combin Theory Ser B, 2003, 88: 189-192.
[56]  GR\"{U}NBAUM B. Gr\"{o}tzsch''s theorem on 3-coloring [J]. Michigan Math J, 1963, 10: 303-310.
[57]  BORODIN O V. A new proof of Gr\"{u}nbaum''s 3-color theorem [J]. Discrete Math, 1997, 169: 177-183.
[58]  } DVO\''{R}\''{A}K D, K\''{R}AL D, THOMAS R. Coloring planar graphs with triangles far apart [EB/OL]. arXiv: 0911. 0855v1 [math. CO].
[59]  STEINBERG R. The state of the three color problem [M]//Quo Vadis, Graph Theory: a Soure Book for Challenges and Directions. Annals of Discrete Math, 1993, 55: 211-248.
[60]  STEINBERG R. An update on the state of the three color problem [M]//Graph Theory Notes of New York. New York Acad of Science, 1993, 25: 9-12.
[61]  THOMASSEN C. The Jordan-Sch\"{o}nflies theorem and the classification of surfaces [J]. Amer Math Monthly, 1992, 99: 116-130.
[62]  RINGEL G, YOUNGS J W T. Solution of the Heawood map-coloring problem [J]. Proc Nat Acad Sci U S A, 1968, 60: 438-455.
[63]  FRANKLIN P. A six color problem [J]. J Math Phys, 1934, 13: 363-369.
[64]  WAGNER K. Beweis einer Abschwachung der Hadwiger-Vermutung [J]. Math Ann, 1964, 153: 139-141.
[65]  BIRKHOFF G D, LEWIS D C. Chromatic polynomials [J]. Trans Amer Math Soc, 1946, 60: 355-451.
[66]  THOMASSEN C. The number of k-colorings of a graph on a fixed surface [J]. Discrete Math, 2006, 306: 3145-3153.
[67]  THOMASSEN C. Exponentially many 5-list-colorings of planar graphs [J]. J Combin Theory Ser B, 2007, 97: 571-583.
[68]  THOMASSEN C. Many 3-colorings of triangle-free planar graphs [J]. J Combin Theory Ser B, 2007, 97: 334-349.
[69]  MOHAR B. Kempe equivalence of colorings [C]//Graph Theory in Paris, Proceedings of a Conference in Memory of Claude Berge, Birkhauser, 2006: 287-297.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133