SHAMIR A. Identity-based cryptosystems and signature schemes[C]//Advances in cryptology. Berlin: Springer, 1985: 47-53.
[2]
BONEH D, FRANKLIN M. Identity-based encryption from the Weil pairing[C]//Advances in Cryptology- CRYPTO 2001. Berlin: Springer, 2001: 213-229.
[3]
COCKS C. An identity based encryption scheme based on quadratic residues[M]//Cryptography and Coding. Berlin: Springer, 2001: 360-363.
[4]
AGRAWAL S, BONEH D, BOYEN X. Efficient lattice (H)IBE in the standard model[M]//Advances in Cryp- tology-EUROCRYPT 2010. Berlin: Springer, 2010: 553-572.
[5]
SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[C]//Foundations of Com- puter Science, 1994 Proceedings., 35th Annual Symposium on. IEEE, 1994: 124-134.
[6]
GENTRY C. Certificate-based encryption and the certificate revocation problem[M]//Advances in Cryp- tology-EUROCRYPT 2003. Berlin: Springer, 2003: 272-293.
[7]
BONEH D, CANETTI R, HALEVI S, et al. Chosen-ciphertext security from identity-based encryption[J]. SIAM Journal on Computing, 2006, 36(5): 1301-1328.
[8]
REGEV O. On lattices, learning with errors, random linear codes, and cryptography[J]. Journal of the ACM (JACM), 2009, 56(6): 34.
[9]
BELLARE M, BOLDYREVA A, DESAI A, et al. Key-privacy in public-key encryption[M]//Advances in Cryptology-ASIACRYPT 2001. Berlin: Springer, 2001: 566-582.
[10]
DODIS Y, OSTROVSKY R, REYZIN L, et al. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data[J]. SIAM Journal on Computing, 2008, 38(1): 97-139.
[11]
CRAMER R, DAMGRD I. On the amortized complexity of zero-knowledge protocols[M]//Advances in Cryptology-CRYPTO 2009. Berlin: Springer, 2009: 177-191.
[12]
PEIKERT C. Public-key cryptosystems from the worst-case shortest vector problem[C]//Proceedings of the 41st annual ACM symposium on Theory of computing. ACM, 2009: 333-342.
[13]
AJTAI M. Generating hard instances of lattice problems[C]//Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. ACM, 1996: 99-108.
[14]
AJTAI M. The shortest vector problem in L2 is NP-hard for randomized reductions[C]//Proceedings of the thirtieth annual ACM symposium on Theory of computing. ACM, 1998: 10-19.
[15]
ALWEN J, PEIKERT C. Generating shorter bases for hard random lattices[J]. Theory of Computing Systems, 2011, 48(3): 535-553.
[16]
AJTAI M. Generating hard instances of the short basis problem[M]//Automata, Languages and Programming. Berlin: Springer, 1999: 1-9.
[17]
GENTRY C, PEIKERT C, VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]//Proceedings of the 40th annual ACM symposium on Theory of computing. ACM, 2008: 197-206.