全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

确定有限多个曲面实交集的拓扑

, PP. 36-46

Keywords: 曲面,一般位置,拓扑,子结式序列

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一个关于计算曲面实交集拓扑的有效算法,其中曲面由有限多个实系数三元多项式所定义.这个算法使用了实交集至多两个投影的拓扑信息.在此过程中,必须使得有限多个曲面满足一定的条件,这些条件通过线性坐标变换可以得到,并且应用一些方法来检测这些条件是否满足.

References

[1]  RUPPRECHT D. An algorithm for computing certified approximate GCD of n univariate polynomials[J]. J Pure Appl Algebra, 1999, 139: 255-284.
[2]  BAJAJ C, HOFFMANN C M. Tracing surfaces intersection[J]. Comput Aided Geom Design, 1988(5): 285-307.
[3]  KEYSER J, CULVER T, MANOCHA D, et al. Efficient and exact manipulation of algebraic points and curves[J]. Comput Aided Geom Design, 2000(32): 649-662.
[4]  KEYSER J, CULVER T, MANOCHA D, et al. A library for efficient and exact manipulation of algebraic points and curves[C]//Proc 15th Annu ACM Sympos Comput Geom, 1999: 360-369.
[5]  SHARIR M. Arrangements and Their Applications[M]//SACK J. Handbook of Computational Geometry. North Holland: Elsevier, 2000: 49-119.
[6]  {5}HALPERIN D, SHARIR M. Arrangements and Their Applications in Robotics: Recent Developments[C]//Proceedings of the Workshop on Algorithmic Foundations of Robotics. 1995: 495-511.
[7]  GONZALEZ-VEGA L, NECULA I. Efficient topology determination of implicitly defined algebraic plane curves[J]. Comput Aided Geom Design, 2002, 19(9): 719-743.
[8]  ALCAZ{A}R J G, SENDRA J R. Computation of the topology of algebraic space curves[J]. J Symbolic Comput, 2005,39(6): 719-744.
[9]  DAOUDA N D, BERNARD M, OLIVIER R. On the computation of the topology of a non-reduced implicit space curve[C]//Proceedings of the 21st International Symposium On Symbolic and Alyebraic Computation. New York: ACM, 2008: 47-54.
[10]  SHEN L Y, CHENG J S, JIA X H, Homeomorphic approximation of the intersection curve of two rational surfaces[J]. Computer Aided Goemetric Design, 2012, 29(8): 613-625.
[11]  BASU S, POLLACK R, ROY M F. Algorithms in real algebraic geometry [M]//Algorithms and Computation in Mathematics 10. Berlin: Springer-Verlag, 2003.
[12]  CHEN Y F. Lectures on Computer Algebra[M]. Beijing: Higher Education Press, 2009.
[13]  {12}WOLPERT N. An Exact and Efficient Approach for Computing a Cell in an Arrangement of Quadrics[D]. Saarbr"ucken: Universit"ades Saarlandes 2002.
[14]  SCHOMER E, WOLPERT N. An exact and efficient approach for computing a cell in an arrangement of quadrics[J]. Computational Geometry: Theory and Applications, 2006, 33(1-2): 65-97.
[15]  {14}COX D, LITTLE J, O''SHEA D. Ideals,Varieties,and Algorithms[M]. Berlin: Springer-Verlag. 2004.
[16]  COLLINS G E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition[J]. Automata Theory and Formal Languages, 1975(33): 134-183.
[17]  ARNON D S, COLLINS G E, MCCALLUM S. Cylindrical algebraic decomposition I: The basic algorithm[J]. SIAM J Comput, 1984, 13(4): 865-877.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133