全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深层神经网络(DNN)的汉语方言种属语音识别

, PP. 60-67

Keywords: 深层神经网络,方言语音识别,QuickNet

Full-Text   Cite this paper   Add to My Lib

Abstract:

将深层神经网络(DeepNeuralNetwork)应用于汉语方言种属语音识别.基于优化的QuickNet软件,为方言识别实现了一种有监督的DNN逐层预训练方法.在训练时,从3层开始逐层做有监督的神经网络训练,每增长一层的初始权值包含前一层训练好的部分权值和输出端的随机权值.在得到最大层的初始权值后,再进行传统的BP网络训练.该方法和普通神经网络相比识别率有较大提升,可用于移动互联网标准语音识别入口、方言口音鉴识等领域.

References

[1]  HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[J]. Signal Processing Magazine, IEEE, 2012, 29(6): 82-97.
[2]  BAKER J. The DRAGON system-An overview[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1975, 23(1): 24-29.
[3]  OH K S, JUNG K. GPU implementation of neural networks[J]. Pattern Recognition, 2004, 37(6): 1311-1314.
[4]  顾明亮, 沈兆勇. 基于语音配列的汉语方言自动辨识[J]. 中文信息学报, 2006, 20(5): 77-82.
[5]  RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
[6]  HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[7]  LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[J]. The Journal of Machine Learning Research, 2009(10): 1-40.
[8]  BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[J]. Advances in Neural Information Processing Systems, 2007(19): 153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133