|
红外与激光工程 2013
采用Kalman_BP神经网络的视频序列多目标检测与跟踪, PP. 2553-2560 Abstract: 针对在复杂环境下多目标检测与跟踪实时性差和准确率低的问题,提出了一种基于神经网络修正均方误差估计的卡尔曼滤波跟踪方法,实现视频序列的多目标跟踪。在该方法中,首先通过帧间差分法准确提取出背景,并结合背景消减法实现多目标的检测,应用形态学滤波对检测结果进行优化;然后利用Kalman_BP神经网络预测滤波器对运动目标的位置进行预测。BP神经网络的引入,主要是降低由于模型变化以及噪声等引起的Kalman滤波器的估计误差,使Kalman滤波器的预测结果更加精准;最后,通过对不同的目标贴上标签,实现目标快速匹配,根据相邻帧间同一目标形心位置以及外接矩形的一致性,建立目标链,实现多目标跟踪。实验结果表明,该算法不仅能够快速稳定地对不同场景中的目标进行跟踪,而且能够统计目标数目和显示目标的运动轨迹,与粒子滤波等方法相比跟踪更加平稳,提高了跟踪的可靠性。
|