|
红外与激光工程 2013
基于Contourlet变换和Facet模型的红外小目标检测方法, PP. 2281-2287 Abstract: 针对存在复杂背景干扰和噪声情况下的红外弱小目标检测问题,提出了一种基于循环平移Contourlet变换和Facet模型多向梯度特性的检测方法。首先通过循环平移Contourlet变换,利用硬阈值对图像进行去噪,提高图像的信噪比和平滑性;然后设计了一种基于Facet模型多向梯度特性的中值滤波器,对去噪后的图像进行滤波,有效地抑制复杂背景和噪声;其次采用两级最大类间方差算法对滤波后的图像进行分割;最后根据相邻帧候选目标的位置和速度关系进一步检测弱小目标。实验证明,这种算法抗噪性强,对包含强纹理结构的复杂背景具有良好的抑制作用,能够有效地检测出弱小目标。
|