全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

弱非线性斯托克斯波在非平整海底上传播的新型抛物型方程

, PP. 101-106

Keywords: 弱非线性斯托克斯波,非平整海底,二阶长波,非线性抛物型方程,浅滩实验

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于缓坡方程计算量大和其本身的缓坡假定而在实际应用中受到了限制,故对斯托克斯波在非平整海底(适用于缓坡和陡坡地形)上传播的Liu和Dingemans的三阶演化方程进行抛物逼近,得到一个新的非线性抛物型方程,它能够包含同类方程未曾考虑的二阶长波效应.通过数值计算结果与Berkhoff等人的经典实验数据的比较,证明所提出的抛物型模型理论具有较高的精度.

References

[1]  Liu P L-F, Mei C C. Water motion on a beach in the presence of a breakwater 1. Waves. J Geophys Res, 1976, 81: 3 079~3 084
[2]  Berkhoff J C W. Computation of combined refraction-diffraction. Proc 13th Int Conf Coastal Eng. Vancouver: ASCE, 1972. 471~490
[3]  Radder A C. On the parabolic equation method for water-wave propagation. J Fluid Mech, 1979, 95: 159~176
[4]  Kirby J T, Dalrymple R A. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly varying to pography. J Fluid Mech, 1983, 136:453~466
[5]  Liu P L-F, Tsay T-K. Refraction-diffraction model for weakly nonlinear water waves. J Fluid Mech, 1984, 141:265~274
[6]  Dalrymple R A, Kirby J T. Models for very wide-angle water waves and wave diffraction. J Fluid Mech, 1988, 192: 33~50.
[7]  林刚,邱大洪.新抛物型缓底坡波动方程.水利学报,1999,(3):59~63
[8]  陶建华,韩光,龙文.浅水区大面积波浪场数值计算方法的研究.第九届全国海岸工程学术讨论会北京:海洋出版社,1999.17~24
[9]  Kirby J T. A general wave equation for waves over rippled beds. J Fluid Mech, 1986, 162: 171~186
[10]  Liu P L-F, Dingemans M W. Derivation of the third-order evolution equatons for weakly nonlinear water propagating over uneven bottoms. Wave Motion, 1989, 11:41~64
[11]  Chandrasekera C N, Cheung K F. Extended linear refraction-diffraction model. J Wtrwy, Port, Coast, and Oc Engr, 1997, 123(5): 280~286
[12]  Mei C C, Benmousa C. Long waves induced by short wave groups over an uneven bottom. J Fluid Mech, 1984, 139: 219~350
[13]  Wu J K, Liu P L-F. Harbor excitations by incident wave groups. J Fluid Mech, 1990, 217:595~613
[14]  Roelvink J K, Stive MJ F. Bar-generating cross-shore flow mechanism on a beach. J Geophys Res, 1989, 94:4 785~4 800
[15]  Berkhoff J C W, Booij N, Radder A C. Verification of numerical wave propagation models for simple harmonic linear waves.Coastal Eng, 1982, 6:255~279

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133