OBAYASHI Y, TANOUE E, SUZUKI K, et al. Spatial and temporal variabilities of phytoplankton community structure in the northern North Pacific as determined by phytoplankton pigments [J]. Deep-Sea Res, 2001, 48(2) : 439-469.
[2]
ODATE T. Abundance and size composition of the summer phytoplankton communities in the Western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska [J]. J Oceanogr, 1996, 52(3): 335-351.
[3]
STEWARD G F, SMITH D C, AZAM F. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas [J]. Mar Ecol Prog Ser, 1996, 131: 287-300.
[4]
KOPYLOV A I, KOSOLAPOV D B, FLINT M V. Microplanktonic communities in the coastal waters, harbor, and salt lagoon of Saint Paul Island (Pribilof Islands, Bering Sea): structural and functional analysis [J]. Oceanol, 2001, 41(1): 94-104.
[5]
NIELSEN T G, HANSEN B W. Plankton community structure and carbon cycling on the western coast of Greenland during and after the sedimentation of a diatom bloom [J]. Mar Ecol Prog Ser, 1995, 125: 239-257.
[6]
PORTER KG, FEIGYS. The use of DAPI for identifying and counting aquatic microflora [J]. LimnolOceanogr, 1980, 25(5): 943-948.
[7]
HOLM-HANSEN O, RIEMANN B. Chlorophyll-a determination: improvements in methodology [J]. Oikos, 1978, 30(3): 438-447.
[8]
SHERR B F, CARON E B, SHERR B F. Staining of heterotrophic protists for visualization via epifluorescence microscopy [A]. KEMP P F, et al. Handbook of methods in Aquatic Microbial Ecology [M]. Boca Raton, FL:Lewis Publishers, 1993. 213-228.
[9]
HELCOM. Guidelines for the Baltic monitoring programme for the third stage: Part D. Biological determinands [M]. Helsiki: Finnish Governmental Printing Centre, 1989. 161.
[10]
LESSARD E J. The trophic role of heterotrophic dinoflagellates in diverse marine environments [J]. Mar Microb Food Webs, 1991,(5): 49-58.
[11]
BOOTH, B C, LEWIN J, POSTEL J R. Temporal variation in the structure of autotrophic and heterotrophic communities in the sub arctic Pacific [J]. Prog Oceanogr, 1993, 32(1): 57-99.
[12]
LEE C W, KUDO I, YANADA M, et al. Bacterial abundance and production and heterotrophic nanoflagellate abundance in subarctic coastal waters (Western North Pacific Ocean) [J]. Aquat Microb Ecol, 2001, 23(3): 263-271.
[13]
ANDERSON T R, DUCKLOW H W. Microbial loop carbon cycling in ocean environments studied using a simple steady-state model[J]. Aquat Microb Ecol, 2001, 26(1): 37-49.
[14]
KIRCHMAN D L, KEEL R G, SIMON M et al. Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific [J]. Deep-Sea Res, 1993, 40(5): 967-988.
[15]
SHERR E B, SHERR B F, FESSENDEN L. Heterotrophic protists in the Central Arctic Ocean [J]. Deep-Sea Res, 1997, 44(8):1 665-1 682.
[16]
SHERR B F, SHERR E B. Proportional distribution of total numbers, biovolumn, and bacterivory among size classes of 2~20 μm nonpigmented marine flagellates [J]. Mar Microb Food Webs, 1991, (5): 227-237.
[17]
JACOBSEN D M, ANDERSEN D M. Growth and grazing rates of Protoperidinium hirobis Abe, a thecate heterotrophic dinoflagellates [J]. J Plank Res, 1993, 15(7): 723-736.
[18]
BOYD P, HARRISON P J. Phytoplankton dynamics in the NE subarctic Pacific[J]. Deep-Sea Res, 1999, 46(11-12): 2 405-2 432.
COTA G F, POMEROY L R, HARRISON W G, et al. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: arctic summer nutrient depletion and heterotrophy [J]. Mar Ecol Prog Ser, 1996, 135: 247-258.
[21]
POMEROY L R, WIEBE W J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria [J]. Aquat Microb Ecol, 2001, 23(2): 187-204.
[22]
RIVKIN R B, ANDERSON M R, LAJZEROWICZ C. Microbial processes in cold oceans: Ⅰ. Relationship between temperature and bacterial growth rate [J]. Aquat Microb Ecol, 1996, 10(3): 243-254.
SHIOMOTO A, TANAKA H, MURATA T, et al. Surface distribution and abundance of small-sized phytoplankton in the western and central subarctic North Pacific and the Bering Sea in winter [J]. Plank Biol Ecol, 2000, 47(2) : 129-133.
[25]
SUGIMOTO T, TADOKORO K. Interannual-interdecadal variations in zooplankton biomass, chlorophyll concentration and physical environment in the subarctic Pacific and Bering Sea [J]. Fish Oceanogr, 1997,6(2): 74-93.
[26]
COYLE K O, WEINGARTNER T J, HUNT G L Jr. Distribution of acoustically determined biomass and major zooplankton taxa in the upper mixed layer relative to water masses in the western Aleutian Islands [J]. Mar Ecol Prog Ser, 1998, 165: 95-108.
[27]
DAGG M J, VIDAL J, WHITLEDGE T E, et al. The feeding, respiration, and excretion of zooplankton in the Bering Sea during a spring bloom [J]. Deep-Sea Res, 1982, 29(1A): 45-63.
[28]
ANDERSON P. The quantitative importance of the microbial loop in the marine pelagic: a case study from the North Bering/Chukchi Seas [J]. Arch Hydrobiol, 1988, 31(2): 243-251.
[29]
OLSON M B, STROM S L. Phytoplankton growth, microzooplankton herivory and community structure in the southeast Bering Sea:insight into the formation and temporal persistence of an Emiliania huxleyi bloom [J]. Deep-Sea Res(Ⅱ), 2002, 49(6): 5 969-5 990.
[30]
VEHZINA A F, SAVENKOFF C. Inverse modeling of carbon and nitrogen flows in the pelagic food web of the northeast subarctic Pacific [J]. Deep-Sea ResⅡ, 1999, 46(11-12): 2 909-2 939.
[31]
HANSEN B, CHRISTIANSEN S, PEDERSEN G. Plankton dynamics in the marginal ice zone of the central Barents Sea during spring:carbon flow and structure of the grazer food chain [J]. Polar Biol, 1996, 16(2): 115-128.
[32]
RYSGAARD S, NIELSEN T G, HANSEN B W. Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland [J]. Mar Ecol Prog Ser, 1999, 179: 13-25.
[33]
LEE S, FUHRMAN J A. Relationship between biovolumn and biomass of naturally derived marine bacterioplankton [J]. Appl Environ Microbiol, 1987, 53(6): 1 298-1 303.
[34]
LIU H, SUZUKI K, SAINO T. Phytoplankton growth and microzooplankton grazing in the subarctic Pacific Ocean and the Bering Sea during summer 1999 [J]. Deep-Sea Res, 2002, 49(2): 363-375.
[35]
CHO B C, AZAM F. Biogeochemical significance of bacterial biomass in the ocean\'s euphotic zone [J]. Mar Ecol Prog Ser, 1990, 63:253-259.
[36]
KLASS C. Microprotozooplankton distribution and their potential grazing impact in the Antarctic Cirumpolar Current [J]. Deep-Sea Res Ⅱ, 1997, 44(1-2): 375-393.
[37]
STROM S. Grazing and growth rates of the herbivorious dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean[J]. Mar Ecol Prog Ser, 1991, 78: 103-113.
[38]
BURY S J, BOYD P W, PRESTON T, et al. Size-fractionated primary production and nitrogen uptake during a North Atlantic phytoplankton bloom: implications for carbon export estimates [J]. Deep-Sea Res, 2001, 48(3): 689-720.
[39]
RIVKIN R B, PUTLAND J N, ANDERSON M R, et al. Microzooplankton bacterivory and herbivory in the NE subarctic Pacific[J].Deep-Sea Res, 1999, 46(11-12): 2 579-2 618.
[40]
STABENO P J, REED R K. Circulation in the Bering Sea Basin observed by satellite-tracked drifters: 1986~1993 [J]. J Phys Oceanogr, 1994, 24(4): 848-854.
[41]
KINDER T H, SCHUMACHER J D, HANSEN D V. Observations of a baroclinic eddy: an example of mesoscale variability in the Bering Sea [J]. J Phys Oceanogr, 1980, 10(8): 1 228-1 245.