全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biot反演在夏威夷钙质沉积物原位测量声速和衰减中的应用

, PP. 80-84

Keywords: Biot反演,原位测试,声速,声衰减

Full-Text   Cite this paper   Add to My Lib

Abstract:

对夏威夷檀香山岛的两个站(H3和H4)钙质沉积物进行了20~100kHz的原位纵波声速和声衰减测量.它们均有轻微的频散.随频率的增加H3站位声速从1691m/s增加到1708m/s,H4站位的声速从1579m/s增加到1585m/s.随频率的增加H3站位的有效衰减从15dB/m增加到75dB/m,H4站位的有效衰减从22dB/m增加到62dB/m.运用Biot-Stoll模型对所测得的纵波速度和声衰减数据进行了Biot模型未知参数反演,发现粒径较大的H3站的沉积物(孔隙率为45%)比粒径较小的H4站的沉积物(孔隙率为56%)具有曲率小和渗透率及孔隙半径都大的性质.

References

[1]  HAMILTON E L. Geoacoustic modeling of the seafloor[J]. Journal of the Acoustic Society of America, 1980, 68:1 313-1 340.
[2]  BUCKINGHAM M J, RICHARDSON M D. On tone-burst measurements of sound speed and attenuation in sandy marine sediments[J].IEEE Journal of Oceanic Engineering, 2002, 27(3) :429-453.
[3]  BARBAGELATA A, RICHARDSON M D, MIASCHI B, etc. ISSAMS: an in situ sediment acoustic measurement system[A]. HOVEM J M,RICHARDSON M O. Shear Waves in Marine Sediments[M]. Dordrecht, the Netherlands, 1991. 305-312.
[4]  GENTILMAN R L, FIORE D F, Path H T, et al. Fabrication and properties of 1~3 PZT polymer composites[J]. Ceramic Transactions, 1994,43:239-247.
[5]  QIAN Z W. Fractal dimensions of sediments in nature[J]. Physical Review(E), 1996,53(3):2 304-2 306.
[6]  BLATT H, MIDDLETON G, MURRAY M. Origin of Sedimentary Rocks[M]. N J: Prentice Hall, Englewood Cliffs, 1980. 782.
[7]  BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: I. Low frequency range[J]. Journal of the Acoustic Society of America, 1956, 28: 168-178.
[8]  QIAN Z W. J Sound Vib, 1998,211:791-799.
[9]  吴培木 郭小钢 吴日升.台湾与横春西南海域声速场特性分析[J].海洋学报,2002,24(增刊):179-190.
[10]  STOLL R D. Sediment acoustic[B]. Lectures Notes in Earth Science: 26[乙]. Berlin:Spring-Verlag, 1989.
[11]  CHOTIROS N P, SMITH E, PIPER J N. Refraction and scattering into a sandy ocean sediment in the 30~40 kHz band[J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 362-366.
[12]  WILLIAMS K L, JACKSON D R, THORSOS E I, et al. Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media[J]. IEEE Journal of Oceanic Engineering, 2002,27(3) :413-428.
[13]  WILLIAMS K L, JACKSON D R, THORSOS E I,et al. Acoustic backscattering experiments in a well characterized sand sediment:, data/model comparisons using sediment fluid and Biot models[J]. IEEE Journal of Oceanic Engineering, 2002, 27 (3) : 376-387.
[14]  FAN P F. Sediment of Kaneohe Bay, Oahu, Hawaii[B]. Consultant Reports: Appendix Ⅱ [R]. U S Army Corps of Engineers, 1975.
[15]  RICHARDSON M D. On the use of acoustic impedance values to determine sediment properties[A]. PRLE N G, LANGHORNE D N. Acoustic Classification and Mapping of the Seabed. Bath,UK:Univesity of Bath, 1993. 15-24.
[16]  FRAZER L N, FU S. Seabed sediment attenuation profiles from a movable sub-bottom acoustic vertical array[J]. J acoust Soc Am,1999, 106(1): 120-130.
[17]  RICHARDSON M D. Implications for high frequency acoustic propagation and scattering[J]. Geo-Marine Letters, 1986,16: 196-203.
[18]  BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Ⅱ. Higher frequency range[J]. Journal of the Acoustic Society of America, 1956, 28:179-191.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133