全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄海冷水团海域微型异养鞭毛虫对异养细菌和蓝细菌摄食作用的初步研究

, PP. 123-131

Keywords: 微型异养鞭毛虫,浮游细菌,摄食,黄海冷水团

Full-Text   Cite this paper   Add to My Lib

Abstract:

2006年10月在黄海冷水团海域的三个站点开展了微型异养鞭毛虫、异养细菌和蓝细菌的密度和生物量调查,进行了微型异养鞭毛虫的现场摄食实验,通过荧光标记细菌法和消化系数法获得该海区微型异养鞭毛虫对异养细菌和蓝细菌的摄食率,并估算了微型异养鞭毛虫对异养细菌和蓝细菌现存量及生产力的摄食压。结果显示,微型异养鞭毛虫、异养细菌和蓝细菌的密度分别为0.36×103~1.13×103,0.39×106~1.13×106和0.04×104~3.74×104cells/cm3,温跃层以上明显高于底层。微型异养鞭毛虫对异养细菌的摄食率为5.33~14.89个/(HF·h),对蓝细菌的摄食率为0.26×102~23.10×10-2cells/(HF·h),摄食率随深度而下降。微型异养鞭毛虫每天能消耗9.27%~33.08%的异养细菌现存量和8.12%~16.09%的蓝细菌现存量。同时,微型异养鞭毛虫对异养细菌和蓝细菌的日摄食量各占它们生产力的2.66%~13.10%和8.12%~16.09%。研究表明微型异养鞭毛虫的摄食可能不是秋季黄海冷水团海域浮游细菌及其生产力的主归宿。

References

[1]  CHISHOLM S W,OLSON R J,ZETTLER E R,et al.A novel free-living prochlorophyte abundant in the oceanic euphotic zone[J].Nature,1988,334:340-343.
[2]  GASOL J M,ZEHNDER A.A simple method for the detection and the "a posteriori"correction of the interference of sulfide on phosphorus measurements[J].Scientia Marina,1997,61(2):213-219.
[3]  BILLEN G,SERVAIS P,BECQUEVORT S.Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments:bottom-up or top-down control[J].Hydrobiologia,1990,207:37-42.
[4]  PACE M L.Bacterial mortality and the fate of bacterial production[J].Hydrobiologia,1988,159(1):41-49.
[5]  PERNTHALER J,POSCH T,?IMEK K,et al.Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture[J].Appl Envir Microbiol,2001,67(5):2145-2155.
[6]  WEINBAUER M G,H?FLE M G.Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake[J].Appl Envir Microbiol,1998,64(2):431-438.
[7]  HUANG L F,PAN K and GUO F.Quantitative relationship between flagellate abundance and suspended particle density in Huanghai Sea and East China Sea in summer[J].Acta Oceanologica Sinica,2006,25(2):109-118.
[8]  肖天,张武昌,王荣.海洋蓝细菌在微食物环中作用的初步研究[J].海洋科学,1999,5;48-51.
[9]  张书文,夏长水,袁业立.黄海冷水团水域物理-生态耦合数值模式研究[J].自然科学进展,2002,12(3):315-320.
[10]  SHERR B F,SHERR E B,FALLON R D.Use of monodispersed,fluorescently labeled bacteria to estimate in situ protozoan bacterivory[J].Appl Envir Microbiol,1987,53:958-965.
[11]  潘科.海洋异养鞭毛虫摄食的实验生态学研究[D].厦门:厦门大学,2006.
[12]  LEE S,FUHRMAN J A.Relationships between biovolume and biomass of naturally derived marine bacterioplankton[J].Appl Envir Microbiol,1987,53(6):1298-1303.
[13]  CAMPBELL L,CARPENTER E J.Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp.using the sea water dilution and selective inhibitor techniques[J].Mar Ecol Prog Ser,1986,33:121-129
[14]  CAMPBELL L,NOLLA H A,VAULOT D.The importance of Prochlorococcus to community structure in the central North Pacific Ocean[J].Limnol Oceanogr,1994,39(4):954-961.
[15]  KIMMANCE S A,ATKINSON D,MONTAGNES D J S.Do temperature-food interactions matter? Responses of production and its components in the model heterotrophic flagellate Oxyrrhis marina[J].Aquat Microb Ecol,2006,42(1):63-73.
[16]  ISHIGAKI T,SLEIGH M A.Grazing characteristics and growth efficiencies at two different temperatures for three nanoflagellates fed with vibrio bacteria at three different concentrations[J].Microb Ecol,2001,41(3):264-271.
[17]  SHERR B F,SHERR E B,RASSOULZADEGAN F.Rates of Digestion of Bacteria by Marine Phagotrophic Protozoa:Temperature Dependence[J].Appl Environ Microbiol,1988,54(5):1091-1095
[18]  FENCHEL T.Ecology of heterotrophic microflagellates:IV.Quantitative occurrence and importance as bacterial consumers[J].Mar Ecol Prog Ser,1982,9:35-42.
[19]  KUUPPO-LEINIKKI P.Protozoan grazing on planktonic bacteria and its impact on bacterial population[J].Mar Ecol Prog Ser,1990,63(2):227-238.
[20]  BARCINA I,AYO B,UNANUE M,et al.Comparison of rates of flagellate bacterivory and bacterial production in a marine coastal system[J].Appl Environ Microbiol,1992,58(12):3850-3856.
[21]  STROM S L.Bacterivory:interactions between bacteria and their grazers[M]// KIRCHMAN D L.Microbial Ecology of the Oceans.New York:Wiley-Liss,2002:351-386.
[22]  GASOL J M.A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance[J].Mar Ecol Prog Ser,1994,113(3):291-300.
[23]  CARON D A,LIM E L,MICELI G,et al.Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community[J].Mar Ecol Prog Ser,1991,76(3):205-217.
[24]  WATERBURY J B,WATSON S W,VALOIS F M,et al.Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus[J].Photosynthetic Picoplankton Can Bull Fish Aquat Sci,1986,214:343-369.
[25]  孙晟,岳海东,肖天.海洋蓝细菌(聚球菌属,Synechococcus)的生态学意义及研究方法[J].科学技术与工程,2005,5(21):1628-1633.
[26]  CAPRIULO G M.Ecology of Marine Protozoa[M].Oxford:Oxford University Press,1990.
[27]  PEDROS-ALIO C,CALDERON-PAZ J I,GASOL J M.Comparative analysis shows that bacterivory,not viral lysis,controls the abundance of heterotrophic prokaryotic plankton[J].FEMS Microbiol Ecol,2000,32:157-165.
[28]  JüRGENS K,PERNTHALER J,SCHALLA S,et al.Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing[J].Appl Envir Microbiol,1999,65(3):1241-1250.
[29]  ?IMEK K,VRBA J,PERNTHALER J,et al.Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes[J].Appl Envir Microbiol,1997,63(2):587-95.
[30]  黄凌风.潘科,郭丰,等.异养性海洋鞭毛虫摄食生态学研究进展[J].海洋科学,2006,30(4):78-82.
[31]  GASOL J M,VAQUE D.Lack of coupling between heterotrophic nanoflagellates and bacteria:a general phenomenon across aquatic systems[J].Limnol Oceanogr,1993,38(3):657-665.
[32]  CHRISTAKI U,GIANNAKOUROU A,VAN WAMBEKE F.Nanoflagellate predation on auto-and heterotrophic picoplankton in the oligotrophic Mediterranean Sea[J].Journal of Plankton Research,2001,23:1297-1310.
[33]  李洪波,肖天,丁涛,等.浮游细菌在黄海冷水团中的分布[J].生态学报,2006,26(4):1012-1020.
[34]  张书文.黄海冷水团夏季叶绿素垂向分布结构的影响机制[J].海洋与湖沼.2003,34(2):179-186.
[35]  白洁,姜艳,孙军,等.黄海冷水团邻近海域浮游植物的昼夜垂直变化[J].中国海洋大学学报,2007,37(6):1013-1016.
[36]  李杰,吴增茂,万小芳.黄海冷水团新生产力及微食物环作用分析[J].中国海洋大学学报.2006,36(2);193-199.
[37]  SDOLAN J R,SIMEK K,VRBA J.Ingestion and digestion of an autotrophic picoplankter,Synechococcus,by a heterotrophic nanoflagellate,Bodo saltans[J].Limnol Oceanogr,1998,43(7):1740-1746.
[38]  CHO B C,AZAM F.Biogeochemical significance of bacterial biomass in the ocean\'s euphotic zone[J].Mar Ecol Prog Ser,1990,63(2):253-259.
[39]  赵三军.黄、东海海洋异养细菌的生态学研究[D].青岛:中国科学院海洋研究所,2002.
[40]  KUIPERS B R,WITTE H J.Prochlorophytes as secondary prey for heterotrophic nanoflagellates in the deep chlorophyll maximum layer of the (sub) tropical North Atlantic[J].Mar Ecol Prog Ser,2000,204:53-63.
[41]  NAGATA T.The microflagellate-picoplankton food linkage in the water column of Lake Biwa[J].Limnol Oceanogr,1988,33:504-517.
[42]  HUANG L F,GUO F,HUANG B Q,XIAO T.Distribution pattern of marine flagellate and its controlling factors in the central and north part of the Yellow Sea in early summer[J].Acta Oceanologica Sinica,2003,22(2):273-280.
[43]  WIKNER J,HAGSTR?M A.Evidence for a tightly coupled nanoplanktonic predator-prey link regulating the bacterivores in the marine environment[J].Mar Ecol Prog Ser,1988,50(1):137-145.
[44]  WEINBAUER M G,PEDUZZI P.Significance of viruses versus heterotrophic nanoflagellates for controlling bacterial abundance in the northern Adriatic Sea[J].Journal of Plankton Research,1995,17:1851-1856.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133