全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

斜压罗斯贝变形半径优化的误差相关尺度及其对最优插值效果的改进

DOI: 10.3969/j.issn.0253-4193.2014.01.012, PP. 109-118

Keywords: 最优插值,斜压罗斯贝变形半径,误差相关尺度

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用最优插值方法进行三维温盐场重构时,如何正确估算背景场误差协方差至关重要。针对背景场误差协方差主要取决于误差相关尺度的问题,本文提出了用中国东部海域及其附近海域的最新的高分辨率气候态数据进行斜压罗斯贝变形半径优化其误差相关尺度计算的研究方案和技术途径;对比分析了均一化相关尺度方案和法国ISAS系统尺度方案,讨论了变形半径对最优插值的影响。结果表明:均一化相关尺度方案的均方根误差小于ISAS方案,但温度场过于平滑,难以刻画一些重要的物理现象;相比而言,本文提出的基于变形半径的相关尺度方案在取2倍变形半径时,不仅均方根误差在各水平层较小,且温度场能够更好地刻画四国海盆海域涡旋及黑潮影响的温度场三维结构。由于实际海洋中各层物理过程的尺度存在差异,实际应用时各层的最优尺度设置也应有所不同。

References

[1]  Talagrand O. Assimilaton of observations, an introduction[J]. J Met Soc Japan, Special Issue, 1997, 75(1B): 191—209.
[2]  Troupin C, Barth A. Generation of analysis and consistent error fields using the Data Interpolating Variational Analysis(DIVA)[J].Ocean Modeling, 2012, 52-53:90—101.
[3]  Brion E, Gaillard F.ISAS-Tool Version 6: User\'s manual[R].France: Ifremer, 2012.
[4]  闫长香, 谢基平, 朱江.一个快速海洋三维温盐流分析系统及在亚丁湾邻近海域的应用[J].气候与环境研究, 2011, 16(4):419—429.
[5]  Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability[M].Cambridge University Press, 2003.
[6]  Gandin L S. Objective Analysis of Meteorological Fields[M]. Legingrad: Hydrometeorological Publi, 1963.
[7]  李冬, 王喜冬, 张学峰, 等.基于扩散滤波的多尺度三维变分研究[J]. 海洋通报, 2011, 30(2):164—171.
[8]  舒业强.针对表层海温与实测温盐的南海海洋资料同化研究[D].广州:中国科学院南海海洋研究所, 2009.
[9]  Jacob L, Hyer, Jun She. Optimal interpolation of sea surface temperature for the North Sea and Baltic Sea[J]. Journal of Marine Systems, 2009, 65(1-4): 176—189.
[10]  Meyers C, Phillips H, Smith N, et al. Space and time scales for optimal interpolation of temperature -Tropical Pacific Ocean[J]. Prog Oceanog, 1991, 28(3):189—218.
[11]  Reynolds, Richard W, Dudley B. Chelton comparisons of daily sea surface temperature analyses for 2007-08[J]. J Climate, 2010, 23: 3545—3562.
[12]  Qiu Bo. Kuroshio extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback[J]. J Phys Oceanogr, 2003, 33: 2465—2482.
[13]  LeBlond P H, Mysak L A. Waves in the Ocean[M].Armsterdam∶Elsevier, 1978.
[14]  Pedlosky J. Geoptysical fluid dynamics[M]. New York:Springer-Verlag, 1987:710.
[15]  Gill A E. Atmosphere -ocean Dynamics[M]. New York: Academic Press, 1982.
[16]  Emery W J, Lee W G, Magaard L. Geographic and seasonal distributions of Brunt-Vaisala frequency and Rossby radⅡ in the North Pacific and North Atlantic[J]. J Phys Oceanogr, 1984, 14:294—317.
[17]  Chelton, Dudley B, Roland A, et al. Geographical variability of the First Baroclinic Rossby Radius of deformation[J]. J Phys Oceanogr, 1998, 28:433—460.
[18]  Cai Shuqun, Long Xiaomin, Wu Renhao, et al. Geographical and monthly variability of the first baroclinic Rossby radius of deformation in the South China Sea[J]. Journal of Marine Systems, 2008, 74(1/2):711—720.
[19]  管秉贤.伊豆海脊两侧顺时针流涡的若干观测证据[J]. 海洋科学进展, 1996, 14(4):1—9.
[20]  Chaigneau A, Texier M L, Eldin G, et al. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats[J]. J Geophys Res, 2011, 116(C11): 25.
[21]  庄照荣, 薛纪善, 庄士宇, 等.资料同化中背景场位势高度误差统计分析的研究[J]. 大气科学, 2006, 30(3): 533—544.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133